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ABSTRACT. In 1988 Simpson extended the Donaldson-Uhlenbeck-Yau theorem to the
context of Higgs bundles, and as an application he proved a uniformization theo-
rem which characterizes complex projective manifolds and quasi-projective curves
whose universal coverings are complex unit balls. In this paper we give a necessary
and sufficient condition for quasi-projective manifolds to be uniformized by com-
plex unit balls. This generalizes the uniformization theorem by Simpson. Several
byproducts are also obtained in this paper.
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0. INTRODUCTION

0.1. Main result. The main goal of this paper is to characterize complex quasi-
projective manifolds whose universal coverings are complex unit balls.

Theorem A (=Theorem 4.8.(i)). Let X be an n-dimensional complex projective manifold
and let D be a smooth divisor on X (which might contain several disjoint components).
Let L be an ample polarization on X. For the log Higgs bundle (Q} (log D) & Ox, 6) on
(X, D) with the Higgs field 6 defined by

(0.1.1) QL (log D) ® Ox — (QL(log D) ® Ox) ® QL (log D)
(a,b) — (0,a),
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if it is pr-polystable (see § 1.4 for the definition), then one has the following inequality

n _
— 1c1(£2§((logD))2) e (L)% > 0.

(0.1.2) (2¢2(Q} (log D)) -

When the equality holds, then X — D =~ Bn/r for some torsion free latticeT' ¢ PU(n, 1)

acting on B". Moreover, X is the (unique) toroidal compactification oan/r, and each
connected component of D is the smooth quotient of an Abelian variety A by a finite
group acting freely on A.

Let us stress here that the smoothness of D in Theorem A is indeed necessary if one
would like to characterize non-compact ball quotients: in Theorem 4.8.(ii) we prove
that the universal cover of X — D is not the complex unit ball B" if D is assumed to
be simple normal crossing but not smooth, leaving other conditions in Theorem A
unchanged. Thus, it might be more appropriate to say that in this paper we give a
characterization of smooth toroidal compactification of non-compact ball quotients.

Note that when D is empty or when dim X = 1, Theorem A has already been
proved by Simpson [Sim88, Proposition 9.8]. As we will see later, we follow his strat-
egy closely to prove the above theorem. Let us also mention that the inequality (0.1.2)
is a direct consequence of Mochizuki’s deep work on the Bogomolov-Gieseker in-
equality for parabolic Higgs bundles [Moc06, Theorem 6.5]. Our main contribution
is the uniformization result when the equality in (0.1.2) is achieved. The proof builds
on Simpson’s ingenious ideas [Sim88] on characterizations of complete varieties uni-
formized by Hermitian symmetric spaces, as well as Mochizuki’s celebrated work on
Simpson correspondence for tame harmonic bundles [Moc06]. Since the Kobayashi-
Hitchin correspondence for general slope polystable parabolic Higgs bundles is still
unproven, we need some additional methods to prove the above uniformization result
(see § 0.3 for rough ideas).

We will show that the conditions in Theorem A is indeed necessary, by proving
the following slope stability (with respect to a more general polarization) result for
the natural log Higgs bundles associated to toroidal compactification of non-compact
ball quotient by torsion free lattice.

Theorem B (=§ 5.4). Let I' ¢ PU(n, 1) be a torsion free lattice with only unipotent
parabolic elements. Let X be the (smooth) toroidal compactification of the ball quotient
Bn/r. Write D := X—Bn/r for the boundary divisor, which is a disjoint union of Abelian
varieties. Let « € H*'(X,R) be a big and nef cohomology (1,1)-class on X containing
a positive closed (1,1)-current T € « so that T|x_p is a smooth Kdhler form and has at
most Poincaré growth near D (for example, @ = ¢1(Kx + D) or a contains a Kdhler form
@). Then one has the following equality for Chern classes

(0.1.3) 2c5(Qy (log D)) — -

— 1cl(Q}((logD))2 =0.

The log Higgs bundle (Qy (log D) & Ox, 0) defined in (0.1.1) is pq-polystable for the
above big and nef polarization . In particular, it is slope polystable with respect to any
Kdhler polarization and the polarization by the big and nef class c;(Kx + D).

As a consequence of Theorems A and B, following [Sim88, Corollary 9.5] in the
compact setting, we give a new proof for the following rigidity result of ball quotient
under the automorphism of complex number field C to its coeflicients of defining
equations.

Corollary C (=§ 6). LetT' c PU(n,1) be a torsion free lattice, and let X := Bn/r be
the ball quotient, which carries a unique algebraic structure, denoted by X,,. For any
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automorphism o € Aut(C), letX::lg := Xalg X5 Spec(C) be the conjugate variety of Xyig
under the automorphism o, and denote by X° the analytification ofXSg. Then X is
also a ball quotient, namely there is another torsion free lattice I'° C PU(n,1) so that
X7 =8

When T is arithmetic, Corollary C has been proved by Kazhdan [Kaz83]. When
I is non-arithmetic, it was proved by Mok-Yeung [MY93, Theorem 1] and by Baldi-
Ullmo [BU20, Theorem 8.4.2].

We also obtain some byproducts, and let us mention a few. We prove the Simpson-
Mochizuki correspondence for principal system of log Hodge bundles over projec-
tive log pairs (see Theorem 3.1). We give a characterization of slope stability with
respect to big and nef classes for log Higgs bundles on Kahler log pairs (see The-
orem 5.7). We also give a very simple proof of the negativity of kernels of Higgs
fields of tame harmonic bundles by Brunebarbe [Bru17] (originally by Zuo [Zuo00] for
system of log Hodge bundles), using some extension theorems of plurisubharmonic
functions in complex analysis (see Theorem 4.6). In the appendix written jointly with
Benoit Cadorel, we prove a metric rigidity result for toroidal compactification of non-
compact ball quotients (see Theorem A.8).

0.2. A few histories. Since the main purpose of this paper is to prove the uni-
formization result rather than the Miyaoka-Yau type inequality (0.1.2), we shall only
recall some earlier work related to the characterization of ball quotient, and we refer
the readers to [GKT16,GT16] for more references on the Miyaoka-Yau type inequal-
ities.

Based on his proof of the Calabi conjecture [Yau78], Yau established the inequality
(0.1.2) when X is a projective manifold and D = @ with Kx ample. He proved that X is
uniformized by the complex unit ball in case of equality. Miyaoka-Yau inequality and
uniformization result were extended to the context of compact Kéhler varieties with
quotient singularities by Cheng-Yau [CY86] using orbifold Kahler-Einstein metrics.
A partial uniformization result for smooth minimal models of general type have been
obtained by Zhang [Zha09]. More recently, uniformization result has been extended
to projective varieties with klt singularities in the series of work [GKPT19b,GKPT19a]
by Greb-Kebekus-Peternell-Taji.

All the above works dealt with compact varieties. A strong uniformization result
was established by Kobayashi [Kob84,Kob85] in the case of open orbifold surfaces (see
also [CY86]). In [CY86] Cheng-Yau also gave a differential geometric characterization
of quasi-projective ball quotients of any dimensions using the method of bounded
geometry in [CY80]. At almost the same time, based on [CY86], Tian-Yau [TY87] and
Tsuji [Tsu88] independently established similar algebraic geometric characterizations
of non-compact ball quotient of any dimension. To the best of author’s knowledge,
[TY87, Tsu88] are the only known works of algebraic geometric characterization of
high dimensional quasi-projective manifolds whose universal covers are unit balls.
See also [Yau93] for more details.

All these aforementioned uniformization results are built on the positivity of the
(log) canonical sheaf of the varieties together with existence of Kahler-Einstein met-
rics. In [Sim88], Simpson established a remarkable uniformization result in terms of
stability of Higgs bundles. We essentially follow his approaches in this paper. In next
subsection, we shall recall his ideas and discuss main difficulties in generalizing his
methods to the context of non-compact varieties.
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0.3. Main strategy. Let us briefly recall Simpson’s strategy for the proof of Theo-
rem A when D = @. In [Sim88, Theorem 1], Simpson proved that Higgs bundles over
compact Kéhler manifolds are polystable if and only if they admit Hermitian-Yang-
Mills metrics. He then introduced the important notion of principal system of Hodge
bundles, which is closed related to principal variation of Hodge structures. Based on
the Donaldson heat flow methods in his proof of [Sim88, Theorem 1], in [Sim88, Propo-
sition 8.2] he proved that a principal system of Hodge bundles with vanishing second
Chern classes gives rise to a principal variation of Hodge structures, and vice versa.
Assume now the boundary divisor D of X in Theorem A is empty. In [Sim88, p. 901]
Simpson defined a principal system of Hodge bundles associated to (Q; & Oy, 0)
whose second Chern class vanishes by [Sim88, Proposition 9.8]. By [Sim88, Proposi-
tion 8.2], this gives rise to a principal variation of Hodge structures on the universal
covering of X, whose period map is biholomorphic to the complex unit ball of dim X
since X is compact. This is the rough idea of Simpson’s proof for Theorem A when
D=9.

Let us explain our rough ideas in the proof of Theorem A when the equality in
(0.1.2) holds.

Step 1: Following Simpson in the compact setting, we first define systems of log
Hodge bundles over log pairs. We prove that, a system of log Hodge bun-
dles on a projective with vanishing first and second Chern classes admits a
Hodge metric, which is adapted to the trivial parabolic structure (see Proposi-
tion 1.16). The proof is different from Simpson’s method since its is not clear
for us that Donaldson’s heat flow can give the desired Hermitian-Yang-Mills
metric in the log setting. Instead, we first apply Mochizuki’s celebrated the-
orem [Moc06, Theorem 9.4] to show the existence of harmonic metric, and
we then use some C*-action invariant property of log Hodge bundles to show
that this harmonic metric is moreover a Hodge metric.

Step 2: We generalize the result in Step 1 to the context of principal bundles. Fix a
Hodge group Gy. Following Simpson again, we define a principal system of
log Hodge bundles (P, ) on log pairs (X, D) with the structure group K C G,
where G is the complexification of Gy. Based on the result in Step 1 to-
gether with some similar Tannakian arguments in [Sim90], in Theorem 3.1
we prove that if there is a faithful Hodge representation p : G — GL(V)
for some polarized Hodge structure (V = @;; jszi’j , hy) so that the system
of log Hodge bundles (P xx V,dp(7)) is u-polystable with fx chy(P xg V) -
¢1(L)4mX=2 = ¢ then there is a metric reduction Py for P|x_p so that the
triple (P|x-p, 7|x-p, Py) gives rise to a principal variation of Hodge structures
onX —D.

Step 3: For the system of log Hodge bundles (E := Qy (log D) ® Ox, 0) in Theorem A,
we first associate it a principal system of log Hodge bundles (P, r) in Propo-
sition 2.10, whose Hodge group Gy = PU(n, 1) is of Hermitian type (see Defi-
nition 2.4). One can easily show that c;(P Xk §) = c2(End(E)*) = 0 when the
equality in (0.1.2) holds, where End(E)* denotes the trace free part of End(E).
By a theorem of Mochizuki in Theorem 1.11, the system of log Hodge bundles
(P Xk 6,d(Ad)(7)) = (End(E)*, Onar):) is also slope polystable if (E, 6) is
slope polystable. Since the adjoint representation G — GL(g) is a faithful
Hodge representation, by the result in Step 2, there is a metric reduction Py
for P|x_p so that the triple (P|x_p, T|x-p, Py) gives rise to a principal varia-
tion of Hodge structures on X — D. Since 7 : Tx(—logD) — P xx g”*! is an
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isomorphism, this implies that the period map p : X - D — PU(n, 1)/U(n)
associated to (P|x—p, 7|x-p, Py) from the universal cover X-DofX-Dto
the period domain GO/KO = PU(n, 1)/U(n) is locally biholomorphic. For more
details, see Step one of the proof of Theorem 4.8

Step 4: We have to prove that the period map p in Step 3 is moreover a biholomor-
phism. Note that when D = @, this step is quite easy. In Remark 2.6 we show
that it suffices to prove that the hermitian metric 7*hy on X — D is complete,
where hy is the hermitian metric on P xx g~ "!|x_p induced by the metric re-
duction Py together with the Killing form of g. This step is slightly involved
and the readers can find it in Step two of the proof of Theorem 4.8. To be
brief, we establish a precise model metric (ansatz) for (E, §) ® (E*, %) locally
around D with at most log growth, and we prove that this local metric is in-
deed mutually bounded with hy using similar ideas in [Sim90, §4]. Based on
this model metric, we obtain a precise norm estimates for hy near D, so that
we can prove that 7*hy is a complete metric on X — D. This concludes that

the universal cover of X — D is the unit ball P U(n, 1)/U(n)'

0.4. Further perspectives. In this paper we only consider log Higgs bundles, namely
parabolic Higgs bundles with trivial parabolic structures. If one allows non-trivial
parabolic structures in Theorem A, we expect that there is a ramified covering of X
by the complex unit ball which is only ramified over D.

Theorem A gives a characterizations for ball quotients admitting a smooth toroidal
compactification. It is certainly an interesting question to extend this characteriza-
tion for ball quotients whose toroidal compactification is only an orbifold or even for
singular ball quotients. The first step towards this question is to extend Theorem 3.1
to the stacky setting as [Sim11].

In Theorem A, we consider the ample polarization for log Higgs bundles. In the last
decades, after the sequel work by Campana-Peternell [CP11], Greb-Kebekus-Peternell
[GKP16] and Campana-Paun [CP19], for applications in birational geometry it is quite
important to consider more general polarization by big and nef line bundles or even
movable curves. In Theorem B we establish such generalization for log Higgs bundles
associated to toroidal compactifications of ball quotients. In a future project we would
like to extend Theorem A to this context.

In [Sim88, Theorem 2], Simpson established a characterization of hermitian sym-
metric spaces of non-compact type. In Corollary 3.2 we only partially generalize his
result to the log setting. The missing point is the precise norm estimate of the Hodge
metric as Step 4 in § 0.3. We will consider this problem in a future work.

0.5. Acknowledgments. This work owes a lot to the deep work [Sim8&8, Sim90,
Sim92, Moc06], to which I express my deepest gratitude. I sincerely thank Professor
Carlos Simpson for answering my questions, as well as his suggestions and encour-
agements. I thank Professor Takuro Mochizuki for sending me his personal notes on
the proof of Theorem 1.11. I also thank Professors Jean-Pierre Demailly, Henri Gue-
nancia, Emmanuel Ullmo, Shing-Tung Yau, and Gregorio Baldi, Jiaming Chen, Chen
Jiang, Jie Liu, Mingchen Xia for very helpful discussions and their remarks on this
paper. My special thanks go to Benoit Cadorel for his very fruitful discussions on the
toroidal compactification, which lead to a joint appendix with him in this paper. This
work is supported by “le fond Chern” a 'THES.



6 YA DENG

NOTATIONS AND CONVENTIONS

A couple (E, h) is a Hermitian vector bundle on a complex manifold X if E a holomor-
phic vector bundle on X equipped with a smooth hermitian metric h. dg denotes the
complex structure of E, and we sometimes simply write 9 if no confusion arises.
Two hermitian metrics h and h of a holomorphic vector bundle on X are mutually
bounded if C"'h < h < Ch for some constant C > 0, and we shall denote by h ~ K’.
For a hermitian vector bundle (E, h) on a complex manifold, d, = 9, + g denotes its
Chern connection and R, (E) = d,zl denotes its Chern curvature.

For a Higgs bundle (E, 0, h) with a smooth metric h on a complex manifold, F,(E) :=
Ry (E) + [0, 0], where 6}, is the adjoint of 6 with respect to h. We denote by F,(E)*
the trace free part of F,(E).

Let (E, 0) be a log Higgs bundle on a log pair (X, D). For a,b € Z>(,, we denote by
T%*(E, 6) the tensor product of (E,6) with T*’E := Hom(E®¢ E®"), and T*"@ the
induced Higgs field.

A denotes the unit disk in C, and A* denotes the punctured unit disk.

The complex manifold X in this paper is always assumed to be connected and of
dimension n.

A log pair (X, D) consists of a (possibly non-compact) complex manifold X and simple
normal crossing divisor D on X. Such a log pair is called projective (resp. Kahler) if X
is a projective (resp. compact Kdhler) manifold.

P denotes the holomorphic principal K-fiber bundle on a complex manifold or log
pairs, and Py C P denotes its metric reduction with the structure group K, C K.

For a cohomology big (1, 1)-class @ on a compact Kahler manifold, &(«) denotes the
set of closed positive (1, 1)-currents in a with full Monge-Ampére mass.

For a closed positive (1, 1)-current T on a complex manifold, locally it can be written
as T = V-109¢p with ¢ some plurisubharmonic function. Such ¢ is called the local
potential of T.

Throughout the paper we always work over the complex number field C.

1. LoG HIGGS BUNDLES AND SYSTEM OF LOG HODGE BUNDLES

1.1. Higgs bundles and tame harmonic bundles. In this section we recall the
definition of Higgs bundles and tame harmonic bundles. We refer the readers to
[Sim88, Sim90, Sim92, Moc02, Moc07] for further details.

Definition 1.1. Let X be a complex manifold. A Higgs bundle on X is a pair (E, 0)
where E is a holomorphic vector bundle with J its complex structure, and 6 : E —
E ® Qj is a holomorphic one form with value in End(E), say Higgs field, satisfying
ON0=0.

Let (E, 0) be a Higgs bundle over a complex manifold X. Write D” := g + 0. Then
D”? = 0. Suppose h is a smooth hermitian metric of E. Denote by dj, := 9, + Jg the
Chern connection with respect to h, and by 0, the adjoint of 6 with respect to h. Write
D;l =0y + 5;1. The metric h is harmonic if the operator Dy, := D;l + D” is integrable,
that is, if D2 = Ry + [6, 0] = 0.

Definition 1.2 (Harmonic bundle). A harmonic bundle on a complex manifold X is
triple (E, 6, h) where (E, 6) is a Higgs bundle and h is a harmonic metric for (E, 0).

Let X be an n-dimensional complex manifold, and let D be a simple normal crossing
divisor.
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Definition 1.3. (Admissible coordinate) Let p be a point of X, and assume that {D;} ;-1 ,

be components of D containing p. An admissible coordinate around p is the tuple
(Usz1, ..., 2zn; @) (or simply (U; zy, . . ., z,) if no confusion arises) where

e U is an open subset of X containing p.
e there is a holomorphic isomorphism ¢ : U — A" so that ¢(D;) = (z; = 0) for
any j=1,...,¢
We shall write U* := U —D,U(r) :={z € U | |zi| <r,Vi=1,...,n}and U*(r) :=
U(r)ynU*.

Recall that the Poincaré metric wp on (A*)? x A" is described as

Z |\/_dZJ A dZJ Z \/_dzk A dzZy

Z]l (10g|zj 12)? et

Note that

:—\/_aalog(n( log |zj|?) - exp Z |2 )

k=t+1

Definition 1.4 (Poincaré growth). For a hermitian metric w on (A*)! x A", we say
it has at most (resp. the same) Poincaré growth if there is C > 0 so that w < Cwp (resp.
w ~ wp). Let (X, D) be alog pair. A hermitian metric w on X —D has at most (resp. the
same) Poincaré growth near D if for any point x € D, there is an admissible coordinate
(U;z1,...,zy) centered at x and a constant Cyy > 0 so that v < Cywp (resp. © ~ wp)
for the Poincaré metric wp on U*.

Remark 1.5 (Global Kéhler metric with Poincaré growth). Let (X, w) be a compact
Kihler manifold and D = Y/, D; is a simple normal crossing divisor on X. By
Cornalba-Griffiths [CG75], one can construct a Kdhler current T over X, whose re-
striction on X — D is a complete Kahler form, which has the same Poincaré growth
near D as follows.

Let o; be the section H°(X, Ox(D;)) defining D;, and we pick any smooth metric h;
for the line bundle Ox(D;). One can prove that the closed (1,, 1)-current

4
(1.1.1) T:=w- v-1a§10g(— l_[ log e - O—i|~2hi)’
i=1

the desired Kahler current when 0 < ¢ < 1.

For any harmonic bundle (E, 0, h), let p be any point of X, and (U; zy, . . ., z,) be an
admissible coordinate around p. On U, we have the description:

4 n
(1.1.2) 0=> fidlogz;+ > gidzt

Jj=1 k=t+1

Definition 1.6 (Tameness). Let t be a formal variable. We have the polynomials
det(f; — t), and det(gx — t), whose coefficients are holomorphic functions defined
over U*. When the functions can be extended to the holomorphic functions over U,
the harmonic bundle is called tame at p. A harmonic bundle is tame if it is tame at
each point.
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1.2. Parabolic Higgs bundle. In this section, we recall the notions of parabolic
Higgs bundles. For more details refer to [Moc07]. Let X be a complex manifold,
D = Y D; be a reduced simple normal crossing divisor and U = X — D be the
complement of D.

Definition 1.7. A parabolic sheaf (E, 4E, 0) on (X, D) is a torsion free Oy-module E,

together with an R!-indexed filtration E (parabolic structure) by coherent subsheaves

such that

(1) a € Rl and ,E|y = E.

(2) For 1 <i <1, g41,E = E ® Ox(D;), where 1, = (0,...,0,1,0,...,0) with 1 in the
i-th component.

(3) a+eE = oF for any vector € = (¢,...,€) with 0 < e < 1.
(4) The set of weights a such that ,E/,_E # 0 is discrete in R! for any vector € =
(6,...,6) with0 < € < 1.

A weight is normalized if it lies in [0, l)l. Denote (E by °E, where 0 = (0,...,0) .
Note that the parabolic structure of (E, 4E, 0) is uniquely determined by the filtration
for weights lying in [0,1)!. A parabolic bundle on (X, D) consists of a vector bundle
E on X with a parabolic structure, such that as a filtered bundle. When the parabolic
sheaf only has a single weight 0, we say that it has trivial parabolic structure.

Definition 1.8. A parabolic Higgs bundle on (X, D) is a parabolic bundle (E, ,E, 0)
together with Oy linear map

0:E — Qy(logD) ® °E

such that
OANO=0
and
0(4E) € Q) (log D) ® 4F,
for a € [0,1)".

Throughout this paper, we mainly consider parabolic Higgs bundles with trivial
parabolic structures on log pairs (X, D). In this case, it is equivalent to consider log
Higgs bundles (E, 0) over (X, D), namely, E is a holomorphic vector bundle on X, and
0:E— E®Q}(logD) with 6 A 6 = 0.

A natural class of parabolic Higgs bundles comes from prolongations of tame har-
monic bundle, which is discussed in the following section.

1.3. Prolongation by an increased order. By the work of Simpson [Sim90] and
Mochizuki [Moc02, Moc07], there is a natural parabolic Higgs bundle induced by a
tame harmonic bundle (E, 0, h). Let us recall their constructions.

We recall some notions in [Moc07, §2.2.1]. Let (X, D) be the pair in subsection 1.2.
Let E be a holomorphic vector bundle with a 4" hermitian metric h over X — D.

Let U be an open subset of X, which is admissible with respect to D. For any section
o € T'(U-D,E|y-p), let |o|, denote the norm function of o with respect to the metric
h. We denote |al, € O([]%, |z:|™%) if there exists a positive number C such that
lolp < C- Hle |zi| 7%, For any b € Rf, say —ord(¢) < b means the following:

4
loln = O([ ] 12177
i=1
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for any real number ¢ > 0. For any b, the sheaf pE is defined as follows:
(1.3.1) I'(U—-D,pE) :={c € I'(U - D,E|y-p) | —ord(o) < b}.

The sheaf ,E is called the prolongment of E by an increasing order b. In particular,we
use the notation °E in the case b = (0,...,0).

According to Simpson [Sim90, Theorem 2] and Mochizuki [Moc07, Theorem 8.58],
the above prolongation gives a parabolic Higgs bundles, especially 0 preserves the
filtration.

Theorem 1.9 (Simpson, Mochizuki). Let (X, D) be a complex manifold X with a simple
normal crossing divisor D. If (E, 0, h) is a tame harmonic bundle on X — D, then the
corresponding filtration pE according to the increasing order in the prolongment of E
defines a parabolic bundle (E, pE, 0) on (X, D). O

In this case, we say the harmonic metric is adapted to the parabolic structure of
(E,pE, 0).

1.4. Slope stability. Let (X, w) be a compact Kahler manifold of dimension n and
let D be a simple normal crossing divisor on X. Let (E, 6) be a log Higgs bundle on
(X,D). Let a be a big and nef cohomology (1, 1)-class on X. For any torsion free
coherent sheaf F, its degree with respect to « is defined by deg, (F) := ¢;(F) - «"" !, and
its slope with respect to « is defined by

deg, (F)
«(F) = ¢ .
Ha(F) rank F

Consider a log Higgs bundle (E, 0) on (X, D). A Higgs sub-sheaf is a saturated co-
herent torsion free subsheaf E’ C E so that 0(E") ¢ E’ ® Qx(log D). We say (E, 0) is
Ug-stable if for Higgs sub-sheaf E’ of E, with 0 < rank E’ < rank E, the condition

pa(E) < pa(E)

is satisfied. (E, 0) is p,-polystable if it is a direct sum of p,-stable log Higgs bundles
with the same slope.

When a = {w} where w is a Kéhler form on X, we write p,, instead of y,. When
a = c1(L) for some ample line bundle L on X, we use the notation p;, instead of .

By Simpson [Sim90], there is a C*-action on log Higgs bundles (E, 8) defined by
(E, t0) for any t € C*. It follows from the definition that, if (E, 0) is p,-stable, then
(E, t0) is also p,,-stable for any t € C*.

The following celebrated Simpson correspondence for tame harmonic bundles proved
by Mochizuki [Moc06] is a crucial ingredient in this paper.

Theorem 1.10 (Mochizuki). Let (X, D) be a projective log pair endowed with an ample
polarization L. A log Higgs bundle (E,0) on (X, D) is up-polystable with chl(E) .
¢y (L)dimX-1 = fX chy(E) - ¢1(L)Y¥™X=2 = 0 if and only if there is a harmonic metric
h for (E|x—-p,0|x-p) which is adapted to the trivial parabolic structure. When (E, 0)
is moreover stable, such a harmonic metric h is unique up to some positive constant
multiplication.

Let us mention that in [Biq97] Biquard has proved a stronger theorem when the
divisor D in Theorem 1.10 is smooth.

The poly-stability is also preserved under tensor product and dual by Mochizuki
[Moc19, Proposition 4.10].
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Theorem 1.11 (Mochizuki). Let (X, D) be a projective log pair endowed with an ample
polarization L. Let (E, 0) be a uy-polystable log Higgs bundle on (X, D). Then the tensor
product T%(E, 0) is still a pir -polystable log Higgs bundle for a,b € Zs. Here T*’E :=
Hom(E®? E®%) with T**0 the induced Higgs field.

1.5. Simpson-Mochizuki correspondence for systems of log Hodge bundles.
A typical and important class of log Higgs bundle is the system of log Hodge bun-
dles. In this subsection, we shall apply Theorem 1.10 to prove the Simpson-Mochizuki
correspondence for systems of log Hodge bundles.

Definition 1.12 (System of log Hodge bundles). Let (E, 0) be a log Higgs bundle on
a log pair (X, D). We say that (E, 0) is a system of log Hodge bundles if there is a
decomposition of E into holomorphic vector bundles E := ®,44=.E*? such that

6 : EP1 — EP~11*1 @ Q1 (log D).

When D = @, such (E, 0) is called a system of Hodge bundles. A system of log Hodge
bundles is y,-(poly)stable if it is p,-(poly)stable in the sense of log Higgs bundles.

Definition 1.13 (Hodge metric). Let (E := @,44=,EP%, 0) be a system of Hodge bun-
dles on a complex manifold X. A hermitian metric h for E is called a Hodge metric if
h is harmonic, and it is a direct sum of metrics on the bundles EP*9.

By Simpson [Sim88], a system of Hodge bundles equipped with a Hodge metric is
equivalent to a complex variation of Hodge structures. He then established his corre-
spondence for Hodge bundles over compact Kahler manifolds as follows.

Theorem 1.14 ([Sim88, Proposition 8.1]). Suppose (X, w) is a compact Kdhler mani-
fold. A Hodge bundle (E := ©p14=wEPY, 0) with ¢;(E) = 0 and c;(E) - [w]4mX=2 = ¢ js
Uy -polystable if and only if it admits a Hodge metric.

In the rest of this subsection, we will extend Theorem 1.14 to the log setting.

Let us first recall that, by Simpson [Sim90], a characterization of log Hodge bundles
is the fixed point of C*-action. The automorphism of E obtained by multiplication by
t? on EP1 gives an isomorphism between (E, 0) and (E, tf). The converse holds as
follows.

Lemma 1.15 ( [Sim90, Lemma 4.1] & [Sim92, Theorem 8]). Let (E, 6) be a log Higgs
bundle on a log pair (X, D). If (E,0) ~ (E,t0) for somet € C* which is not a root of
unity, then (E, 0) has a structure of system of log Hodge bundles.

Let us state and prove the main result in this subsection.

Proposition 1.16. Let (X, D) be a projective log pair. Let (E,0) = (®p+q=wEP9,0)
be a system of log Hodge bundles on (X, D) which is pr-polystable with /XC1(E) .
¢y (L)dimX-1 — chhz(E) - ¢y (L)mX=2 = 0. Then there is a decomposition (E, 0) =
®icr(Ei, 0;) where each (E;, 0;) is py-stable system of log Hodge bundles so that there is
a Hodge metric h; (unique up to a positive multiplication) for (E;|x_p, 0i|x-p) which is
adapted to the trivial parabolic structure of (E;, 0;).

Proof. Let us first prove the proposition when (E, ) is stable. By [Moc06, Theorem
9.1 & Propositions 5.1-5.3], there is a harmonic metrics h for (E|x_p, 0|x-p) which is
adapted to the trivial parabolic structure, and such a harmonic metric is unique up
to a positive constant multiplication. We introduce automorphism f; : E — E of E
parametrized by t € U(1), defined by

(1.5.1) £i( Z e 1) = Z tPeld.

prqg=w prq=w
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for every e”? € EP4. Then f; : (E, 0) — (E, t0) is an isomorphism since tfo f; = f;00.
Hence by the uniqueness of harmonic metrics, there is a function A(¢) : U(1) — R*
such that
fih=A(t) - h.

For every ef? € EP4, one has
A(t)-h(eP9,eP?) = fh(eP9, ePD) = h(f;(eP9), f,(eP)) = |t |*h(eP, ePT) = h(eP, eP7)
Hence A(t) = 1 for t € U(1), namely f;"h = h. On the other hand,

h(eP9,e™) = fTh(e%, ™) = h(fi(eP), fi(e™)) = (P h(eP, &™)

for any t € U(1). Therefore, h(eP,e™*) = 0 if p # r. Hence h is a direct sum of
hermitian metrics for E9, namely h is a Hodge metric. The proposition is proved if
(E, 0) is stable.

Let us prove the general cases. By [Moc06, Corollary 3.11 & Theorem 9.1 & Proposi-
tions 5.1-5.3], there is a canonical and unique decomposition (E, 0) = &®;¢;(E;, 6;) @ CP
where [ is a finite set and harmonic metrics h; for (E;|x—_p, 0;|x—p) which is adapted
to the trivial parabolic structure so that (E;, 6;) is a pg-stable log Higgs bundle. By the
above arguments, it suffices to prove that each (E;, 6;) is system of log Hodge bundles.
Since (E, 0) is a system of log Hodge bundles, (E, t0) is isomorphic to (E, 0) for any
t € U(1). We have the following decomposition (E, t0) = &;(E;, t0;) ® CPi. Note that
(E;, t6;) is still pz-stable. By the uniqueness of the decomposition, (E;, t0;) ~ (E;,, 6;,)
for some i; € I. Since I is a finite set, there exists t, t; so that t;/t, is not a root of
unity and i;, = i,. In other words, (E;, t16;) =~ (E;, t26;). By Lemma 1.15, (E;, t;0;) is
a system of log Hodge bundles, and so is (E;, 6;). Hence (E, 0) is a direct sum of -
stable system of log Hodge bundles (E;, 6;), and each (E;|x_p, 0;|x-p) admits a Hodge
metric h; adapted to the trivial parabolic structure. The proposition is proved. O

2. PRINCIPAL SYSTEM OF LOG HODGE BUNDLES

In this section, we will extend Simpson’s principal system of log Hodge bundles in
[Sim88, §8] to the log setting. We will provide all necessary proofs for the claims
for completeness sake. Let us mention that most results in this section follows from
[Sim88, §8 & §9] with minor changes.

Let Gy be a real connected algebraic group which is semi-simple with its Lie algebra
denoted by g¢. Let G be its complexification with its Lie algebra denoted by g. Then
g = go + V=1g. Gy is called a Hodge group if the following conditions hold.

e The Lie algebra g of G admits a Hodge structure of weight 0, namely, one has a
decomposition
g= @gp,_P
so that [gP7?, g%79] C gP*¢ P74,
e If ‘e denotes the complex conjugation with respect to gy, then gP’—_P =g PP,
e The form

(2.0.1) hg(U,V) == (-1)’"'Tr(adyady) for U,V € gPP

is a positively definite hermitian metric for g.
let Ky C Gy be the Lie subgroup of Gy so that its Lie algebra Ty is go N g®°. Let K € G
(resp. ) be the complexification of K (resp. ¥j), and thus the Lie algebra of K is .
Then the restriction of the Killing form of gy on { is positively definite, and thus Kj
is a compact real Lie group.

In the rest of the paper, we shall use the above notations without recalling their
meanings.
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The following concrete example of the Hodge group will be used in this paper,
especially in the proof of Theorem A.

Example 2.1. Consider the a direct sum of C-vector spaces

V= EBi+j=wViJ
Denote by r; := rankV%/, and r := rank V. Fix a hermitian metric h = @, j=whi for
V where h; is a hermitian metric for V*/. We take a sesquilinear form Q(u,v) :=
(V=1)""7h(u,v) for u,o € V. Define Gy := PU(V,Q) = PU(po,qo), where py :=
Diodd Vi and qo = 2; epen i- We shall show that G, is a Hodge group.

First we note that the complexification of Gy is G := PGL(V) ~ PGL(r,C). Then
the Lie algebra of Gis g = sl(V) =~ sl(r, C), and the Lie algebra of Gy is go = su(po, qo)-
Let us define the Hodge decomposition as follows:

g” 7P = @&;Hom(V", VI*PI=P) N sI(V).

Then g = ®g” . One can check that g»? = g™, where the conjugate is taken with
respect to the real form g of g.

Let K be the subgroup of G which fix each V*/. Then K = P([];;-,, GL(V"/)), and
its Lie algebra is ¥ = g®°. Define Ky := K N Gy = P([11joy, U(V*™, hy)), whose Lie
algebra is £, = g®° N go.

More precisely, if we fix a unitary frame ey, ..., e, for (®i4aV"™, ®; oaahi) and a
unitary frame fi, ..., f, for (&; cenV", ®ioqqhi), elements in gy can be expressed as
the ones in M(r X r, C) with the form

A C
C* B

where A € u(py) and B € u(qo) so that Tr(A) + Tr(B) = 0. Note that the Killing form
Tr(adyady,) = 2rTr(uv),

if we consider u, v as elements in sI(r, C). Moreover, for u € g??, one can show that

_ |-u" ifpiseven

u=

u* if p is odd.
where u* denotes the conjugate transpose of u. Hence the hermitian metric hy defined
in (2.0.1) can be simply expressed as
hg(u,v) = 2rTr(uv”®)

once we consider u, v as elements in sl(r, C). In other words, for the natural inclusion
t:g = gl(V), one has hy = 2r - 1"hgpq(v), where hgnq(v) is the hermitian metric on
End(V) induced by hy. This fact is an important ingredient in the proof of Theorem A.

Let us generalize Simpson’s definition of principal system of Hodge bundles in
[Sim88, §8] to the log setting as follows.

Definition 2.2 (Principal system of log Hodge bundles). A principal system of log
Hodge bundles on a log pair (X, D) is a pair (P, 7), where P is a holomorphic K-fiber
bundle endowed with a holomorphic map

T: Tx(— logD) — P Xg g_l’l

such that [7(u),7(v)] = 0. A metric for P|x_p is a reduction Py C P|x_p whose
structure group is K. Let dy be the Chern connection for Py. Define 7y to be the
complex conjugate of 7|x_p with respect to the reduction Py. Then

Ty € €°(X - D, (Py Xk, 677 ® Q3L ).
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Set
(2.0.2) Dy = dH + TlX—D + Ty,

which is a connection on the smooth Gy-bundle Py xg,Gy. Such triple (P|x_p, 7|x-p, Pr)
is called a principal variation of Hodge structures over X — D of Hodge group Gy, if the
induced connection Dy in (2.0.2) is flat, namely the curvature of Dy is zero.

Remark 2.3 (Period map of principal variation of Hodge structures). By Simpson
[Sim88, p. 900], for a principal variation of Hodge structures (P, 7, Py) on a com-
plex manifold X, one can also define its period map as follows. Denote by 7 : X — X
the universal cover of X. Set (15 = 7*P, 7 = x'1, .f’H := m*Py), which is a princi-
pal variation of Hodge structures on the simply connected complex manifold X. The
flat connection Dy thus induces a flat trivialization Py Xk, Go = X X Gy. Denote by
¢ : Py — Gy the composition of the inclusion Py C Py Xk, Go = X X Gy and the
projection X x Gy — Gy. It induces a map

(2.0.3) fiX-0yy =9
X+ ¢(ey) - Ky Vey € I5Hx

Alternatively, we view Gy — ¥ as a principal Ko-fiber bundle over 7, and its pull-
back on X via f is nothing but the principal Ky-fiber bundle Py by our definition of
f. Hence the complexified differential of f is

dft . T)g — f*T_;S ~ f*(Go Xk, ®pz08"F) = Py X, Sprogl P

One can prove that df¢ = 7 + 7y, where 7y is the conjugate of 7 with respect to
Py. Hence the restriction of df€ to the holomorphic tangent bundle T; is 7, which
is a holomorphic map since the holomorphic tangent bundle of 7 is Ty ~ Gy Xk,
®p<08”7P. In conclusion, f is a holomorphic map, which is called the period map
associated to the principal variation of Hodge structures (P, 7, Py), whose differential
is given by df = 7.

The uniformization is related by Hodge group of Hermitian type.

Definition 2.4 ([Sim88, §9]). A Hodge group G is called Hermitian type if the Hodge
decomposition g of the Lie algebra of G is

g=g " @™ egl!

and that Gy has no compact factor. In this case, Ky C Gy is the maximal compact
subgroup and 7 := GO/KO is a Hermitian symmetric space of the non-compact type.

We also have to generalize the definition of uniformizing bundle by Simpson [Sim88,
§9] to the log setting.

Definition 2.5 (Uniformizing bundle). Let G, be a Hodge group of Hermitian type.
A uniformizing bundle on a log pair (X, D) is a principal system of log Hodge bundles
(P,7) such that 7 : Tx(—log D) — P Xg g~ ! is an isomorphism. A uniformizing vari-
ation of Hodge structures is a uniformizing bundle on a complex manifold X together
with a flat metric Py C P.

Remark 2.6 (Uniformization via uniformizing bundles). It follows from Definition 2.5
that, for a uniformizing variation of Hodge structures over a complex manifold X,
the period map f : X — & defined in (2.0.3) is locally biholomorphic. Note that
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the metric reduction Py induces a hermitian metric hg on P Xx g~ ! ~ Py XK, g bt

defined by
(2.0.4) hu((p, u), (p,v)) = Tr(ad, o ads)
forany p € Py and u,0 € g~ b1, Note that for any k € K;, one has

hu ((pk, Adi-1u), (pk, Ad-10)) = Tr(adag,_,u © adm)

= Tr(adAdk_lu o adAdk_lﬁ)
= Tr(Ad-1 o ad, o Ady o Adj-1 o ad; o Ady)

= hu((p.w), (p,0)).

By the equivalence relation (p,u) ~ (pk, Adi-1u), the metric hy is thus well-defined.
For the period domain & which is a hermitian symmetric space, one can also define
the hermitian metric hy for Ty ~ Gy X, ¢~ 1! in a similar way. Since Py = *Go when
we consider Gy — ¥ as a principal Ky-fiber bundle, one has

(2.0.5) m't"hy = f*hg.

In other words, f : (X, hi = n*t*hy) — (2, hg) is a local isometry. Hence for the
action of 7 (X) on X, the metric hy is invariant under this 7; (X)-action. If 7*hy is a
complete metric, so is 7*7*hg. By [Cha06, Theorem IV.1.2], f : X — Z is a covering
map, which is moreover a biholomorphism since X and 2 are both simply connected.
In other words, X is uniformized by the hermitian symmetric space .

One can construct systems of log Hodge bundles from principal ones via Hodge
representations.

Definition 2.7 ([Sim88, p. 900]). Let (V = ®,44=w V9, hy) be a polarized Hodge
structure. A Hodge representation of G is a complex representation p : G — GL(V)
satisfying the following conditions.

e The action of g is compatible with Hodge type, and such that K preserves Hodge
type. In other words,
dp(" ") (VP9) € VT
and p(Ky)(VP9) c vPa !
e The sesquilinear form Q defined by

(2.0.6) O(u,v) .= (V=-1)’"%hy(u,0) for wu,0e€ VP
is Gy invariant. Namely, one has p(Gy) c U(V, Q).

Example 2.8. For the Hodge group Gy, (g = ©,8”7?, hy) is a polarized Hodge struc-
ture of weight 0, where hg is the polarization defined in (2.0.1) via the Killing form.
One can easily check that the adjoint representation Ad : G — GL(g) is a Hodge
representation for this polarized Hodge structure. Since G is a semi-simple Lie group,
the differential d(Ad) : ¢ — gl(g) is injective. When the center of G is trivial, then
Ad is faithful.

A principal system of log Hodge bundles together with a Hodge representation
induces a system of log Hodge bundles as follows.

1 As remarked by Simpson [Sim88], this is not automatic if Kj is not connected. However, in Exam-
ple 2.1, Kj is always connected, and thus such condition will be superfluous in that case.
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Lemma 2.9. If p : G — GL(V) is a Hodge representation of the Hodge group Gy and
(P, t) is a principal system of log Hodge bundles on the log pair (X, D), then (E :=
P xx V,0 :=dp(r)) is a system of log Hodge bundles. A polarization hy forV together
with a metric Py for P|x_p give a metric hg on the system of Hodge bundles (E, 0)|x_p
over X — D. When (P|x_p, T|x-p, Py) is a principal variation of Hodge structures over
X — D, (E|x-p, B|x-p, hg) gives rise to a complex variation of Hodge structures.

Proof. By Definition 2.7, one has p(K)(VP9) c VP4 Hence E := P Xk V admits a
decomposition of holomorphic vector bundles E = & 4-,EP? with EP9 .= P xg VP4,
Let us define 0 := dp(r). Since 7 : Tx(—log D) — P xx g~ ! satisfies [r(u), 7(v)] = 0,
and dp(g~"")(VP?) c VP~1*! one thus has 6 : EPY — EPM* @ Qf (log D), with
6 A 8 = 0. Hence (E, 0) is a system of log Hodge bundles.
Let us now prove that p|k, : Ko — GL(V) hasimage onU(V, hy). Since p(K)(VP9) C
VP4 one thus has
p(K) C ]_[ GL(VP9).
ptqg=w
Since the sesquilinear form Q in (2.0.6) is G, invariant, one thus has

p(Go) =U(V, Q).
Hence

(2.0.7) p(Ko) € p(GoNK) C H U(VP9, hyy) € UV, hy).
p+g=w
Note that E = P Xg V = Py Xk, V. We define the hermitian metric hg for E by setting

he((p, u), (p,0)) = hv (4, 0)

for any p € Py and for any u,0 € V. Since p(Ky) € U(V,hy), one can check as
Remark 2.6 that h is well-defined.

If (P|x-p,7|x-p,Px) is a principal variation of Hodge structures on X — D, the
connection Dy := dy + 7 + Ty is flat. By construction, the connection Dy, := dj, +
0 + éhE for E|x_p is also flat, where dj, is the Chern connection for the metrized
vector bundle (E, hg), and EhE is the conjugate of 6 with respect to hg. Indeed, dj, is
naturally induced by dy, and 6 = dp(7), 5;15 = dp(7y). By [Sim88, p. 898], the triple
(Elx-p, Blx-p, he) gives rise to a complex variation of Hodge structureson X —D. O

Conversely, one can associate a system of log Hodge bundles with a principal one
as follows. The following result shall be applied in the proof of Theorem A.

Proposition 2.10. Let (E, 0) = (®p1q=wEP, 0) be a system of log Hodge bundles on a
log pair (X, D). Then there is a principal system of log Hodge bundles (P, t) with the
structure group K associated to (E, 0), where K is the semi-simple Lie group in Exam-
ple 2.1. Moreover, any hermitian metric h := @p14=wh,, for E|x_p gives rise to a metric
reduction Py for P|x_p with the structure group K, defined in Example 2.1.

Proof. We shall adopt the same notions as those in Example 2.1. Denote by r, :=
rank EP9, r = 3, ., 1p and set & == )5 ri. We consider the following frame bun-
dle P. The fiber of P over a point x is the set of all ordered bases ey, ..., e, (or say
frames) for E, such that €,—ry+15- -5 €p, 1S @ basis for Eg’q. The structure group of p
is thus [, GL(rp, C), which is the subgroup of GL(r, C). P can be equipped with the
holomorphic structure induced by E. Consider the homomorphism f : GL(r,C) —
PGL(r,C) =: G, and set K = P( [1, GL(ry, C)) to be the image of [1, GL(rp,C) under
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f. Set P to be the holomorphic K-fiber bundle obtained by extending the structure
group of [, GL(ry, C) using f.

Note that Pxx ¢~ = @4 j=,Hom(E™, E"1/*1). Let us define 7 := 6. The pair (P, 7)
is a principal system of log Hodge bundles on the log pair (X, D).

Recall that the metric h for the Hodge bundle (E, 0)|x_p is a direct sum h = @p44=wh,.
We take a sesquilinear form Q of E defined by Q(u,0) := (V=1)?"9h(u,0v) for u,0 €
EP9. We take Py to be a reduction of 13| x—p consisting of unitary frames with respect
to Q. In other words, The fiber of P over a point x is the set of frames ey, . . ., e, for Ey
such that €r,—ry+1, - - -5 €r, 1S AN orthonormal basis for (Eﬁ’q, hy,). Hence the structure
group of Py is Ko := [1psgew U(rp). Define Ko := P([1,4qe U(rp)), Which is the
image f(K,). Set Py to be the smooth principal Ky-fiber bundle on X — D obtained
by extending the structure group of Py using f : K — K. Then Py C Px_p is also a
metric reduction. The Hodge group G, will be PU(po, o) where pg := 2., ¢yen 7p and
qo = 2p odd p> and G := PGL(r, C) is the complexification of Gy. The proposition is
proved. O

3. TANNAKIAN CONSIDERATION

In this section, we shall state and prove the Simpson-Mochizuki correspondence for
principal systems of log Hodge bundles over projective log pairs. Its proof is based
on Proposition 1.16 together with some Tannakian considerations in [Sim90, Moc06,
Maul5s].

Theorem 3.1. Let (X, D) be a projective log pair endowed with an ample polarization
L. Let (P,7) be a principal system of log Hodge bundles on (X, D), and let p be any
faithful Hodge representation p : G < GL(V') for some polarized Hodge structure (V =
@it j=w V", hy). If the system of log Hodge bundles (E := P xx V,0 = dp(r)) defined in
Lemma 2.9 is pp -polystable with fX chy(E) - ¢1(L)5™X=2 = 0, then there exists a metric
reduction Py for P|x_p so that the triple (P|x_p, t|x-p, Py) is a principal variation of
Hodge structures on X — D. Moreover, such Py together with the polarization hy for V
gives rise to a Hodge metric h for (E, 0)|x_p (defined in Lemma 2.9) which is adapted to
the trivial parabolic structure of (E, 0).

Proof. We first prove that (E, 0)|x_p admits a Hodge metric h over (E, 0)|x_p which is
adapted to the trivial parabolic structure of (E, #). Since K is a complex semi-simple
Lie group, the Hodge representation p’ : K — GL(detV) induced by p has image
contained in SL(det V) = 1. Hence p’ is trivial. Note that det E = P Xk det V, which
is thus a trivial line bundle on X. Hence ¢;(E) = 0. Since we assume that (E, 0) is
pr-polystable with fX chy(E) - c1(L)¥™X=2 = ¢, it follows from Proposition 1.16 that
(E, 0)|x-p admits a Hodge metric h over (E, 0)|x_p which is adapted to the trivial
parabolic structure of (E, 0).

Let us now recall some Tannakian arguments. The representation p induces a rep-
resentation p,p : G — GL(T**V) for any a,b € N, where T**V := Hom(V®%, V®?),
Since p is faithful, we can consider K as a reductive algebraic subgroup of GL(V).
There is a one dimensional complex subspace V; € T**V for some (a, b) € N? so that

(3.0.1) K={g € GL(V) | pap(9)(V1) = V1}.

Since K is reductive, there is a complementary subspace V; of T**V for V; which is
invariant under K.

By Lemma 2.9, the Hodge representation p,; and (P, 7) gives rise to a system of
log Hodge bundles (P xx T**V, 0% := dp,, (1)) over (X, D), which is nothing but
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T%*(E, 0). Recall that p,;(K) (V1) = Vi and p,p(K)(Vs) = V,. Consider the log Higgs
bundles (Ej, 61) := (P Xk V1,dpap(7)) and (Ez, 02) == (P Xg Vi,dp, (7)) over (X, D).

Note that T%*(E, §) = (E1, 0;)®(E3, 6,). By Theorem 1.10, Tb(E, 6) is i -polystable
with /X ¢ (T*P(E)) - ¢y (L)imX=1 = 0 with respect to an arbitrary polarization L. Since
¢1(T**(E)) = c1(E;) + c1(Ey), by the polystability of T**(E, §), we conclude that
(E1,01) and (E,, 6,) are both pr-polystable. By Proposition 1.16, each (E;|x_p, 0i|x-p)
admits a harmonic metric h; which is adapted to the trivial parabolic structure of
(E;, 0;). Moreover, h coincides with h; @ h, up to some obvious ambiguity.

In the rest of the proof, any object which appears is restricted over X — D. Let us
first enlarge the structure group of P by defining Pgrv) := PXx GL(V) via the faithful
representation plg : K — GL(V). This is the holomorphic principal (frame) bundle
associated to E. We can consider P = P Xg K C Pgr(y) as a (metric) reduction of
Psr(v). The metric h for E gives rise to a reduction Py g p) of Pgr(v) with the structure
group U(V, hy). Indeed, note that

E = Pgrvy XeLv) V

and thus the metric 4 for E induces a family of hermitian metrics h, for V parametrized
by e € Pgr(v). It has the obvious relation h..; = g*h, for any g € GL(V). We define

(3.0.2) Py(gn) = {e € Porv) | he = hy}

and it is obvious that if e € Py(gp), then e - g € Pygp) if and only if g € U(V, hy).
Hence the structure group of Py (gp) is U(V, hy).

Let us define Py := P N Py(gx) whose structure group is U(V,hy) N K D K by
(2.0.7). Since p is faithful, one has moreover U(V, hy) N K = K. Indeed, this easily
follows from that

K = {exp(N=1n)k | k € Ko, 5 € Ty C Lie(U(h, hy))}

and that
V=1%, N Lie(U(h, hy)) = {0}.

Obviously, if we follow Lemma 2.9 to define a new metric A’ for E by setting

W ((p.w), (p,0)) = hv(u,0)

for any p € Py and for any u,v € V, then
(3.0.3) W =h

by (3.0.2). We shall prove that (P|x_p, z|x-p, Pg) is a principal variation of Hodge
structures on X — D following the elegant arguments in [Maul5, Proposition 3.7].
Let A € € (Porv), Tp ® gl(V)) be the Chern connection 1-form induced by

Perv)

the Chern connection dj, for (E, h). Since T%b (E,h) = (E1, h) & (Ea, hy), by (3.0.1),
when we take a base point p € P C Pgy(v), the holonomy Hol(p, y) with respect to
the connection A along any smooth loop y based at 7 (p) lies at p- K, where we denote
7w : P — X. Hence the restriction of A to P is 1-form with values in . In other words,
A is induced by a connection on P.

On the other hand, by the definition of the Chern connection, A is also induced by
a connection on Py g p. Since Ty = TNLie(U(V, hy)) where Lie(U(V, hy)) denotes the
Lie algebra of U(V, hy), there is a connection Ay € € (Py, T}’,“H ® fy) for the smooth
principal Ky-fiber bundle Py := Py (g NP which induces A. A is moreover the Chern
connection with respect to the reduction Py of P by the construction. Let us define
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Fy € o/V1(P xk g) to be the curvature of the connection Aj + 7 + 7. Recall that one
has 0 = dp(r) and 0}, = dp(7y). Hence

(3.0.4) dp(Fy) = (dy + 0 + 04)? = Fy(E) = 0

where dj, is the Chern connection for (E, h). Since p : G — GL(V) is faithful, dp :
g — End(V) is thus injective. By (3.0.4) this implies that Fy = 0. In conclusion,
(Plx-p» Tlx-D, Pr) is a principal variation of Hodge structures on X — D. O

As a consequence of Theorem 3.1, we can give a partial characterization of hermit-
ian symmetric spaces, which partially extends Simpson’s characterization of hermit-
ian symmetric spaces [Sim88, Theorem 2] to the log setting.

Corollary 3.2. Let (X, D) be a projective log pair endowed with an ample polarization
L. Let (P, 1) be a principal system of log Hodge bundles on (X, D) with G centerless.
Assume that the system of log Hodge bundle (P Xk ¢, d(Ad)(7)) via the faithful Hodge
representation Ad : G — GL(g) in Example 2.8 is pp -polystable with c;(P Xg g) = 0.
Then there is a metric reduction Py for P|x_p so that the triple (P|x_p, T|x-p, Py) is a
principal variation of Hodge structures on X — D. When (P, 1) is further assumed to

be a uniformizing bundle, the period map f : X — D — GO/K0 defined in (2.0.3) from

the universal cover X — D of X — D to the hermitian symmetric space GO/K0 is locally
biholomorphic.

We further conjecture that the above period map is moreover an isomorphism
when (P, 7) is the uniformizing bundle, namely, the universal cover of X — D is the

hermitian symmetric space GO/KO.

4. UNIFORMIZATION OF QUASI-PROJECTIVE MANIFOLDS BY UNIT BALLS

This section is devoted to the proof of Theorem A. In § 4.2 we shall prove a basic
result for the extension of plurisubharmonic functions. This lemma will be used in
the proof of Theorem A. We shall also give an application of this fact in Hodge the-
ory: we can give a much simpler proof of the negativity of kernel of Higgs fields for
tame harmonic bundles originally proven by Brunebarbe [Brul7] (see also [Zuo00]
for systems of log Hodge bundles). With all the tools developed above, we are able to
prove Theorem A in § 4.3.

4.1. Adaptedness to log order and acceptable metrics. We recall some notions
in [Moc07, §2.2.2]. Let X be a ¥ *°-manifold, and E be a ¥ *°-vector bundle with a
hermitian metric h. Let v = (v1,...,0,) be a ¥*-frame of E. We obtain the H(r)-
valued function H(h, v),whose (i, j)-component is given by h(v;,v;).

Let us consider the case X = A", and D = Zle D; with D; = (z; = 0). We have the
coordinate (zy,...,z,). Let h, E and v be as above.

A frame v is called adapted up to log order, if the following inequalities hold over
X-D

¢ ¢
C7H(= Y logla)™ < H(hv) < C(= ) log|zi)™
i=1 i=1
for some positive numbers M and C.

Definition 4.1. Let (X, D) be a log pair, and let E be a holomorphic vector bundle
on X. A hermitian metric h for E|x_p is adapted to log order if for any point x € D,
there is an admissible coordinate (U; zy, . . ., z,), a holomorphic frame v for E|y which
is adapted up to log order.
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Definition 4.2 (Acceptable metric). Let (X, D) be a log pair and let (E 6) be a log
Higgs bundle over (X, D). We say that the metric h for E|x_p is acceptable at p € D,
if the following holds: there is an admissible coordinate (U;z,. .., z,) around p, so
that the norm |Fy|p,, < C for some C > 0 over U — D. When (E, 0, h) is acceptable
at any point p of D, it is called acceptable. Such triple (E, 0, h) is called an acceptable
bundle on (X, D).

One can easily check that acceptable metrics and adaptedness to log order defined
above are invariant under bimeromorphic transformations.

Lemma 4.3. Let (X, D) be a log pair, and let i : X — X be a bimeromorphic morphism
so that u~ 1(D) = D. Foralog Higgs. bundle (E, 0) over (X, D), one can define a log Higgs
bundle (E, §) on (X, D) by setting E = I*E and 0 to be the composition

WE LN p(E® Qy(logD)) — u'E® QL (logD)
If the metric h for (E, 0)|x—_p is acceptable or adapt to log order, so is the metric y*h for
(E,0)z_p-
Proof. Since this is a local statement, we work on the local models. Pick a point x € D
with an admissible coordinate (U;zy,...,z,) withD = (21 --- 2z, = 0) locally and take
an admissible coordinate (V;yy,...,y,) for ,u(fc) With D= (y-- = 0) such that
u(U) € V. Thenfori =1,...,m, p'y; = Hf 1Z; Y with a;; € Z>0 andZ Laij > 0.
One has ,
i log(—[yi[®) = > 2ai;log(~|z;?).
j=1
Therefore, if h is adapted to log order, so is p*h.
Let w; and w; be Poincaré metrics on U and V. One can easily show that
(4.1.1) Cwy > pw,y
for some constant C > 0. Note that
H*Fy(E) = F;(E)
Hence
BB, =By, < S0 FE Ly, =1 SFOE,,
In conlusion, if the metric h for (E, 8)|x-p is acceptable, so is the metric y*h for
(E,0)z_p- O

4.2. Extension of psh functions and negativity of kernel of Higgs fields. In
this subsection we shall prove a result on the extension of plurisubharmonic (psh for
short) functions, which will be used in the proof of Theorem A and Proposition 5.6. As
a byproduct, we give a very simple proof of the negativity of kernels of Higgs fields
of tame harmonic bundles by Brunebarbe [Brul7, Theorem 1.3], which generalizes
the earlier work by Zuo [Zuo00] for system of log Hodge bundles.

Lemma 4.4. Let X = A", and D = Zle D; with D; = (z; = 0). Let ¢ be a psh function
on X*. We assume that for any é > 0, there is a positive constant Cs so that

¢
p(z) <6 ) (~loglzj*) +Cs
=1
on X*. Then ¢ extends uniquely to a psh function on X.
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Proof. Define ¢, = ¢ + 52521(10g |zj|*) for any ¢ > 0. Then for each ¢ > 0, ¢,
is locally bounded from above, which thus extends to a psh ¢, on the whole X by
the well-known fact in pluripotential theory. By the maximum principle, for any
0 < r < 1, there is a point & € S(0,7) X ---S(0,7) so that
sup 0e(2) < (&) < (&)
zeA(0,r)x---xA(0,r)

where S(0,7) := {z € A | |z| = r}. Note that the compact set S(0,r) X ---5(0,r) is
contained in X — D. Since ¢ is psh on X — D, there exists zy € S(0,7) X ---5(0,r) so
that

sup  p(2) < plz0) < +oo.
z€S(0,r)x---S(0,r)

Hence ¢, is uniformly locally bounded from above.
We define the upper envelope
@ = sup ¢,
e>0
and define the upper semicontinuous regularization of ¢ by
¢*(x) := lim sup @(z).
60" B(x,8)

where B(x, §) is the unit ball of radius § centered at x. Then by the well-known result
in pluripotential theory [Dem12b, Chapter 1, Theorme 5.7], ¢* is a psh function on
X. By our construction, $*(z) = ¢(z) on X — D. This proves our result. O

A direct consequence of the above lemma is the following extension theorem of
positive currents.

Lemma 4.5. Let (X, D) be a log pair and let L be a line bundle on X. Assume that h is
a smooth hermitian metric for L|x_p, which is adapted to log order. Assume further that
the curvature form N=1Ry(L|x_p) > 0. Then h extends to a singular hermitian metric
flforL with zero Lelong numbers so that the curvature current \/—_1Rﬁ (L) is closed and
positive. In particular, L is a nef line bundle.

Let us show how to apply Lemma 4.4 to reprove the negativity of kernels of Higgs
fields of tame harmonic bundles.

Theorem 4.6 (Brunebarbe). Let X be a compact Kdahler manifold and let D be a simple
normal crossing divisor on X. Let (E, 6, h) be a tame harmonic bundle on X — D, and let
(°E, 0) be the prolongation defined in § 1.3. Let ¥ be any coherent torsion free subsheaf of
°E which lies in the kernel of the Higgs field 0 : °E — E ® Q3 (log D), namely 0(F) = 0.
Then

(i) the singular hermitian metric h|F for ¥, is semi-negatively curved in the sense
of [PT18, Definition 2.4.1].

(ii) The dual F* of F is weakly positive over X° — D in the sense of Viehweg, where
X° C X is the Zariski open set so that ¥ |xo — °E|x- is a subbundle.

(iii) If the harmonic metric h is adapted to log order and F is a subbundle of °E so that
0(F) = 0, then the line bundle Op(s+) (1) admits a singular hermitian metric g

with zero Lelong numbers so that the curvature current V—1R,(Op(#+)(1)) > 0; in
particular, ¥ is a nef vector bundle.

Proof. By [PT18, Definition 2.4.1], it suffices to prove that for any open set U and any
se F(U),log |s|i extends to a psh function on U. Pick any point x € D. By the defi-
nition of °E in (1.3.1), for any § > 0, there are an admissible coordinate (U; zy, . . ., z,)
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centered at x, and a positive constant Cs so that
¢
log sl < & > (~log|z;*) +Cs
=1
on U — D. Recall that R,(E) + [0, 0] = Fy(E) = 0. We have

VToalog ls|? = _V=1{Ru(B)s, s} ‘/_{9118 Ips} \/—{ahs .S} {S Ops}

HE HE HE HE
V=1{Ry(E)s, s}
s
V=1{0s,0s}  V=1{04s, Ops}
s s
\/_{th 9hs}
HE B

over X —D. Hence log |s] !21 is a psh function on X —D. By Lemma 4.4, we conclude that
log |S|}21 extends to a psh function on U. This proves that (7, h) is negatively curved
in the sense of Paun-Takayama.

The metric h induces a negatively curved singular hermitian metric A, (in the sense
of [PT18, Definition 2.2.1]) on the subbundle ¥ |x-. By Lemma 4.5, h; induces a sin-
gular metric g for the line bundle Op(#+|,.)(1) so that \/—_le(Op(r,r*|Xo) (1)) > 0. Note
that X — X° is a codimension at least two subvariety. The second statement then
follows from Hormander’s Lz-techniques in [PT18, Proof of Theorem 2.5.2].

Let us prove the last statement. Since ¥ is a subbundle of °E, one has X° = X. Since
h is assumed to be adapted to log order, the singular hermitian metric g for Op(#+)(1)
thus has zero Lelong numbers everywhere. This implies the nefness of the vector
bundle F*. O

Remark 4.7. In [Zuo00] Zuo proved the above statement when (E, 6, h) is moreover a
system of log Hodge bundles with unipotent monodromies around the boundary (see
also [FF17] for a refined result). Theorem 4.6 is proved by Brunebarbe in [Brul7].
Both their proofs made use of the monodromy filtration to obtain a precise estimate
of the Hodge metric so that they can show that log |s|fl is locally bounded from above
near D. Here we give a much more simplified proof which uses the very definitions
of tame harmonic bundles and the prolongation of the tame harmonic bundles.

A special case of Theorem 4.6.(iii) comes from the complex variation of Hodge
structures. For the complex variation of Hodge structures defined over X — D with
unipotent monodromies around D, the Hodge metric for the associated system of
Hodge bundles is a harmonic metric which is adapted to log order by [CKS86] or
[Moc02, Lemma 4.15]. Hence Theorem 4.6.(iii) also generalizes [FF17, Corollary 1.6],
whose proof relies on the very delicate analysis by Kollar [Kol87].

4.3. Characterization of non-compact ball quotient. Let us state and prove our
first main theorem in this paper.

Theorem 4.8. Let X be an n-dimensional complex projective manifold and let D be a
simple normal crossing divisor on X. Let L be an ample polarization on X. For the log
Hodge bundle (Q} (log D) @ Ox, 0) on (X, D) with 0 defined in (0.1.1), we assume that



22 YA DENG

it is pg-polystable. Then one has the following inequality

n .
- 1c1(§2§((logD))2) (L)% > 0.

(4.3.1) (2¢2(Q) (log D)) —
When the above equality holds,

(i) if D is smooth, then X — D =~ Bn/r for some torsion free lattice I' ¢ PU(n,1)

acting on B™. Moreover, X is the (unique) toroidal compactification oan/r, and
each connected component of D is the smooth quotient of an Abelian variety A by
a finite group acting freely on A.

(ii) If D is not smooth, then the universal cover X — D of X — D is not biholomor-
phic to B", though there exists a holomorphic map X — D — B" which is locally
biholomorphic.

In both cases, Kx + D is big, nef and ample over X — D.
Proof. Denote the log Hodge bundle (E, §) = (E'° @ E*!, ) by
EY = Qi (logD), E* :=0x.

By [Moc06, Theorem 6.5] we have the following Bogomolov-Gieseker inequality for
(E, 0)

(4.3.2) (2e2(Q} (log X)) - -~ Z -1 (2 (log D))?) - 1 (1) =
(2es(B) - 2 Lo () - er(1) 2 0

This shows the desired inequality (4.3.1).

The rest of the proof will be divided into three steps. In Step 1, we shall construct

a uniformizing variation of Hodge structures on X — D so that the corresponding
period map defined in (2.0.3) induces a holomorphic map (so-called period map in
Remark 2.6) from the universal cover of X — D to B" which is locally biholomorphic.
By (2.0.5), this period map is moreover an isometry if we equip X — D with hermitian
metric induced by the Hodge metric. This proves Theorem 4.8.(ii). In Step two we will
prove that, when D is smooth, the hermitian metric on X — D induced by the Hodge
metric is complete. Together with arguments in Remark 2.6, this proves that the above
period map is indeed a biholomorphism. In Step three we shall prove Theorem 4.8.(ii)
and the positivity of Kx + D.
Step 1. By Proposition 2.10, there is a canonical principal system of log Hodge bundles
(P, 7) on (X, D) with the structure group K = P(GL(V?) x GL(V®!)), and the Hodge
group Gy = PU(n,1). Here (V = V! @ V%! hy) is a polarized Hodge structure
with rank V1? = n and rank V%! = 1. For the complexified group G = PGL(V) of
Go, there is a faithful representation p : G — GL(V ® V*), which is moreover a
Hodge representation in the sense of Definition 2.7 when we equip V ® V* the induced
polarized Hodge structure from (V = V1 @ V%1 hy).

By Lemma 2.9, such Hodge representation p induces a system of log Hodge bundles
(Px,(V®V*),dp(r)) over (X, D). By our construction, this system of log Hodge bun-
dle is nothing but (End(E), Ogn4(r)). An easy computation shows that c¢;(End(E)) = 0,
and

chy(End(E)) = —2rank E - ¢5(E) + (rank E — 1)¢; (E)?
= ncf(KX +D)-2(n+ 1)02(Q§((logD)) =0

since the equality in (4.3.2) holds by our assumption. Since we assume that (E, 0)
is pr-polystable, by Theorem 1.11, (End(E), Ogna(g)) is also pr-polystable. We now
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apply Proposition 1.16 to find a Hodge metric h for the system of log Hodge bun-
dle (End(E)|x-p, Opnd(g)|lx-p) which is adapted to the trivial parabolic structure of
(End(E), Opnq(r)). Using the Tannakian arguments in Theorem 3.1, we conclude that
h induces a reduction Py for P|x_p with the structure group Ky = P(U(n) X U(1)) =~
U (n), which is compatible with h such that (P|x_p, 7|x-p, Py) is a principal variation
of Hodge structures on X — D. Note that

Tx(—log D) 5 P xx ™! = Hom(E, E*!) ~ Hom(QL (log D), Ox)

is an isomorphism. Hence (P|x_p, 7|x-p, Pg) is moreover a uniformizing variation of
Hodge structures over X — D in the sense of Definition 2.5. By Remark 2.6, it gives rise
to a holomorphic map, the so-called period map,

(4.3.3) X-D — GO/K0 = PU(n, 1)/U(n) ~ B"

defined in (2.0.3), which is locally biholomorphic. Here X — D is the universal cover of
X —-D.

Note that the reduction Py together with the hermitian metric hq in (2.0.1) gives
rise to a natural metric hy over P Xg g~ "!|y_p defined in (2.0.4). By Remark 2.6 again,
if the pull back *hy is a complete metric on X — D, then X — D is uniformized by

GO/KO — PU(n, 1)/U( n) which is the complex unit ball of dimension n, denoted by B".

The rest of the proof is devoted to show the completeness of 7*hy.
From the following commutative diagram

G = PGL(V)

pT x
GL(V) —*— GL(gl(V))
and the fact that sI(V) is invariant under Ad, for any g € GL(V), we conclude that
g = sl(V) is an invariant subspace under p(g) for any g € G. Hence for the adjoint
representation
G 2% GL(g) = GL(s|(V)),
one has
p(9)lg = Ady € GL(g).
Therefore, we have the following commutative diagram

Jj

Hom(E, E%1) <% End(E)* — End(E)
(4.3.4) H H H

Pxg g —— Pxgg — PXx,gl(V)

where End(E)? is the trace-free subbundle of End(E).

It follows from (3.0.3) that the Hodge metric h for (End(E) |x—p, Ogna(E)Ix-p) = (PX,
(V@ V*),dp(r)) can be redefined via the reduction Py together with the hermitian
metric hgnq(v) of End(V) induced by (V, hy) as in (2.0.4). Recall that in Example 2.1,
for the natural inclusion ¢ : g < gl(V), one has hg = 2(n+ 1) - 1"hgpq(v). By (4.3.4),
one has

2(n+1)j*h = hy,
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where we recall that hy is the metric over P xx g~"!|x_p induced by the reduction
Py together with the hermitian metric hg4 in (2.0.1). It now suffices to show that 7*h is
complete if we want to prove that X — D is uniformized by B". In next step, we will
apply similar ideas by Simpson [Sim90, Corollary 4.2] to prove this. Note that until
now we made no assumption on the smoothness of D.

Step 2. Throughout Step 2, we will assume that D is smooth. Consider now the
log Higgs bundle (&, ) := (End(E), Oga(g)). We first mention that the above Hodge
metric h for (&, n)|x_p is adapted to log order in the sense of Definition 4.1. Indeed,
it follows from [Moc02, Corollary 4.9] that the eigenvalues of monodromies of the
flat connection D := 9y, + d + 1 + 77, around the divisor D are 1. By the “weak” norm
estimate in [Moc02, Lemma 4.15], we conclude that A is adapted to log order?.

We first give an estimate for 7*h. For any point x € D, consider an admissible
coordinates (U; zy, ..., z,) centered at x as Definition 1.3 so that DNU = (z; = 0). To
distinguish the sections of Higgs bundles and log forms, we write e; := dlogz; and
e; = dz; fori =2,...,n. Denote by ¢y = 1 the constant section of Ox. Let us introduce

a new metric h on (E, 0)|y~ as follows.
|€1|§l = (—log |Z1|2)
(ei,ej); =0 for i# jj
|ei|g =1 for i=2,...,n;

leof? = (~log|z1[2)!

Within this basis {es, .. ., en, €0}, 0 can be expressed as
0 0 0

0 = : P

0 e 00

dlogz; -+ dz, 0

Denote by H := (h;j)o<ij<n the metric matrix of h with respect to the above basis.
One has

0 -+ 0 hilho%
(4.3.5) 0,=H o0H=|' " °: 5
0 -+ 0 h,hedz,

“Indeed, a strong norm estimate has already been obtained by Cattani-Kaplan-Schmid in [CKS86].
Here we only need to know that h is adapted to log order, which is a bit easier to obtain using Andreotti-
Vesentini type results by Simpson [Sim90] and Mochizuki [Moc02, Lemma 4.15].
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Hence for 2 < i < j < n, one has

— dz dz
[0, 0n]11 = hl_llhoo_—l A—
21 21
[0, éh]ij = hi_ilhoodz_'i A dz;
= d
[0, Oxli1 = hy;' hoodZi A 2
2]
_ dz
[0, Onlyi = hthoo =2 A dz,
21
_ dzy dz <
[0, Orloo = hl_llhooﬁ A é + Z hﬁlhoodzl- Adz;.
21 =

Write F,;(E) = F;,(E)kj ® e; ® ex. Then for i, j = 2,...,n, one has

Fi(E)11 = F;(E)o = F;(E)o1 = Fj;(E)oi = F;;(E)jo =0
F;(E)ij = (~log|z1|*)"'dz; A dz;

1
Ff,(E)li =

(=log |z1%)%z
1

(—logl|zi11*)z

n
F;(E)oo = Z(—log |z11%) " Ydz; A dz;.

i=2

dfl A le'

Ffl(E)ll = le- A d21

In conclusion, there is a constant C; > 0 so that one has

C
. 2 _ . ) * 2 1
(4.3.6) F(B)E, = > |F(Exj @€ @el, < Clog mi PPl

0<jk<n

over U* (%) (notation defined in Definition 1.3), where w, = V-1 )., dz; AdZ; denotes
the Euclidean metric on U*.

We abusively denote by h the induced metric on (&, mu+ = (End(E), Ogna(r)) U+,

which is adapted to log order on (U,D N U) in the sense of Definition 4.1 by our
construction. Then

F,;(S) = FE(E) Qlp+1g® F;I*(E*)
=F;(E)® 1p — 1p ® F;(E)"

where F; (E)T is the transpose of F;(E). Hence
Fo(E) (e @ €)) = > (8F;(E)ik — Sy (E)ej) (e ® €])
k.t

for 0 < i, j, k, £ < n. It then follows from (4.3.6) that

Cy
43.7 F (&) <
( ) |h( )lh,we (_10g|21|2)3|21|2

over U*(%) for some constant C, > 0. Consider the identity map s for &, which can be
seen as a holomorphic section of End(&E, &). We denote by (7, ®) := (End(&, E), nEnd(s))



26 YA DENG
the induced Higgs bundle by (&, 17). Note that for any section e of &, one has

0= (dg +1)(s(e)) —s((9 +1)(e))
= ((9r +@)(s))(e)
= ®(s)(e).

Hence

(4.3.8) ®(s) = 0.

We equip ¥ |y~ with the metric hg = h ® h*, where h is the harmonic metric con-
structed in Step one. Note that

Frp (F) = FB(S) Rlg+1g®Fpe(EY)
= Fﬁ(a) ® T
By (4.3.6), there is a constant Cy > 0 so that one has
Co

(4.3.9) |Fh (F) o, <
T (“loglzi?) |z

over U*(%) Then
- 2 + 2 —-v-l 7 A 2
T2 SIZ TUE T,
S V=1{Rps, s}
= _—2
T2

VE{@s, s} V=1{®hs, By} . V=1{Fp,(F)s, s}

|s

V-1alog|sl;

s s

2 2 2
Z Z Z
V—l{CD;WS, <I>h¢s} V—l{FhT(T)S, s}
TR TR
hy hy

. V=1{Fy,(F)s,s}

A

Here the second inequality is due to Cauchy-Schwarz inequality, and the fourth one
follows from (4.3.8). For any & = (&,...,&) with 0 < &,...,&, < %, we define a
smooth function f; over A* parametrized by & by

fe(z1) :=log |3|2¢(21, & En).
Then the above inequality together with (4.3.9) implies that
Co

Afi > —|Fy (F)| = - -
g (—log|z1]2)? |z

where Cj is some uniform constant which does not depend on ¢. Note that

(43.10) lolls = / lo(z)Pdzdz: < Cy
0<|Zl|<%
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for some constant C4 > 0. For any fixed 0 < &,...,&, < % consider the Dirichlet
problem

@) {¢=f§ on {z1 | |z1| = 1)

Ap=¢ on {z1]0<]z|<3}
By (4.3.10) and the elliptic estimate, one has
(4.3.12) sup [¢(z1)| < Cs(llgllz2 + sup fe).

0<|z1|<3 |z1]=3
over {z; | 0 < |z1] < %} for some uniform constant Cs5 which does not depending on

£ Hence A(fy —¢) > 0over {z; | 0 < |z;]| < %} Since both h and h are adapted to log
order, so is h#. Hence there is a constant C4 > 0 so that

4
log sl < Cglog(~ ) log |zl)

i=1

over U*(%) By Lemma 4.4, we conclude that f; —¢ extends to a subharmonic function
on {z; | |z1] < %}. Note that f;(z1) — ¢(2z1) = 0 when |z;| = % Hence by maximum
principle,

fe(z1) < P(z1)
forany 0 < |z| < % Let

Cy = sup fe(z1)

lz1]=1,0<6,... 60 <2

which is finite. By (4.3.10) and (4.3.12), we have

sup log |S|2T(21, ey 2n) S C5(Cy+ Cy).
0<|21|< ,0<2,,.. <%
This implies that h > Cs - h over U*(%) for some constant Cg > 0. By (4.3.7), one has
Co
@ ( log |z1]%)3|z1]*

|F (E) .

Hence if we use the metric h ® h* for ¥ and do the same proof, we can prove that
h < Cy - h over U*( ) for some constant Cy > 0. Therefore, h and h are mutually
bounded on U*( 2). By

7]
(4.3.13) (z1—) =€ ® ¢
821
d
(4.3.14) (z-)=¢j®e for j=2,...n
8zj

we obtain the norm estimate for the metric
V—1d21 A le + i V—lek A dik
|z1]*(log |z1]%)? =

Though 7*h is strictly less than the Poincaré metric near D, one can easily prove that it
is still a complete metric. Therefore, the hermitian metric t*hy = 2(n+ 1)-c*hon X—-D
is also complete. Based on Remark 2.6, we conclude that X — D is uniformized by the
complex unit ball of dimension n, namely, there is a torsion free lattice I' ¢ PU(n, 1)

so that X — D =~ Bn/r. Since h is adapted to log order, by (4.3.13) and (4.3.14), the
canonical Kéahler-Einstein metric w := 7*h for Tx(—log D)|y is also adapted to log

43.15 “h~1'h =
(43.15) rher Tlog [P
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order. It follows from Theorem A.8 that X is the unique toroidal compactification for
the non-compact ball quotient Bn/r. We accomplish the proof of Theorem 4.8.(i).

Step 3. Assume now D is not smooth. By (4.3.3), the period map X - D — B"
is locally biholomorphic. Assume by contradiction that it is an isomorphism. As
discussed above, the canonical Kéhler-Einstein metric w := *h for Tx(—log D)|y is
adapted to log order. It follows from Theorem A.8 that D cannot be singular. The
contradiction is obtained, and thus the period map is not a uniformizing mapping.
We proved Theorem 4.8.(ii).

Let us show that Kx + D is big, nef and ample over X — D. Note that the metric
det w™! for (Kx + D)|y is adapted to log order, and that

Rdetw‘l((KX +D)|U) = (n+ 1)0)'

By Lemma 4.5, the hermitian metric det w™! extends to a singular hermitian metric
hx,+p for Kx+D with zero Lelong numbers. Hence Kx+D is nef. Since ‘/__1RhKX+D (Kx+
D) > 0 on X — D, Kx + D is thus big and ample over X — D. We finish the proof of the
theorem. =

Remark 4.9. Note that the asymptotic behavior of the metric (4.3.15) is exactly the
same as that of the Kahler-Einstein metric for the ball quotient near the boundary of
its toroidal compactification (see [Mok12, eq. (8) on p. 338]). This is indeed the hint
for our construction of h.

Remark 4.10. We expect that Theorem 4.8.(ii) cannot happen. This is the case when
dimX = 2. Indeed, when the Miyaoka-Yau type equality in (0.1.2) holds, together
with the conclusion that Kx + D is big, nef and ample over X — D in Theorem 4.8, it
follows from [Kob85] that X — D is uniformized by B?, which is a contradiction to
Theorem 4.8.(ii).

5. HIGGS BUNDLES ASSOCIATED TO NON-COMPACT BALL QUOTIENTS

In this section, we will prove Theorem B. §§ 5.1 and 5.2 are technical preliminaries.
In § 5.3 we prove that a log Higgs bundle (E, 8) on a compact Kahler log pair is slope
polystable with respect to some polarization by big and nef cohomology (1, 1)-class, if
(E, 0) admits a Hermitian-Yang-Mills metric with “mild singularity” near the bound-
ary divisor. In § 5.4 we use the Bergman metric for quotients of complex unit balls
by torsion free lattices to construct such Hermitian-Yang-Mills metric. This proves
Theorem B.

5.1. Notions of positivity for curvature tensors. We recall some notions of pos-
itivity for Higgs bundles in [DH19, §1.3].

Let (E, ) be a Higgs bundle endowed with a smooth metric h. For any x € X, let
ey,...,e be a frame of E at x, and let e!,...,e" be its dual in E*. Let z,...,2z, be a
local coordinate centered at x. We write

Fu(E) = Ry(E) + [0, 04] = Rflgadzj Adzp ® e® ® eg

Set Rjz,5 = hy/?R}/lEa’ where hﬂ; = h(ey, eg). Fy(E) is called Nakano semi-positive at x
if

Z Rj,;a[;uj“uTﬁ >0
Jk.a.p
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forany u = 3;, uj“% ® ey € (T)i’0 ® E)y. (E, 0, h) is called Nakano semipositive if
F(E) is Nakano semi-positive at every x € X. When 0 = 0, this reduces to the same

positivity concepts in [Dem12b, Chapter VII, §6] for vector bundles.
We write

FL(E) 2nac Mo ® Tg)  forA e R
if L
Z (leéa/? - )La)ﬂ;halg) (x)uj“ukﬂ >0
jk.a.p
forany x € X and any u = 33, uj“% ® ey € (T)}’0 ® E)y.
Let us recall the following lemma in [DH19, Lemma 1.8].

Lemma 5.1. Let (E, 0, h) be a Higgs bundle on a Kihler manifold (X, w). If there is a
positive constant C so that |Fp(x)|n, < C for any x € X, then

Cw® Mg >nak Fr 2y —Coo ® 1
The following easy fact in [DH19, Lemma 1.9] will be useful in this paper.

Lemma 5.2. Let (Eq, 02, hy) and (Ey, 6, hy) are two metrized Higgs bundles over a Kih-
ler manifold (X, w) such that |Fp, (x)|n, o < C1 and |Fp,(x)|n,» < Cz forallx € X. Then
for the hermitian vector bundle (E; ® E,, h1h;), one has

| Fny@hy () |hy @by < \/Zrch +2r,C?

for all x € X. Here r; := rankE;.

5.2. Some pluripotential theories. In this subsection we recall some results of
deep pluripotential theories in [BEGZ10, Guel4]. The results in this subsection will
be used in the proof of Proposition 5.6. Let us first recall the definitions of big or nef
cohomology (1, 1)-classes in [Dem12a, §6].

Definition 5.3. Let (X, ) be a compact Kihler manifold. Let « € H*'(X,R) be a
cohomology (1, 1)-class of X. The class « is nef (numerically eventual free) if for any
¢ > 0, there is a smooth closed (1, 1)-form 7, € « so that . > —¢w. The class « is big

if there is a closed positive (1,1)-current T € « so that T > dw for some § > 0. Such
a current T will be called a Kdéhler current.

Let X be a complex manifold of dimension n and let U C X be a Zariski open set
of X. Pick a smooth hermitian form « on X. For any smooth differential form 5 of

degree p on U so that
/ 1] A 0" < +0o,
U

one can trivially extend 7 to a current T, on X of degree n — p by setting

(5.2.1) (Ty, u) = /Ur] Au

where u is the any test form of degree p which has compact support. In general, T;
might not be closed even if 7 is closed.

Let (X, w) be a compact Kéhler manifold of dimension n. Let ay, . . ., a, be big co-
homology classes. Let T; € a; be positive closed (1, 1)-currents whose local potential
is locally bounded outside a closed analytic subvariety of X (a particular case of small
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unbounded locus of [BEGZ10, Definition 1.2]). In this celebrated work by Boucksom-
Eyssidieux-Guedj-Zariahi [BEGZ10], they defined non-pluripolar product for these
currents

(A ANT,)

which is a closed positive (p, p)-current, and does not charge on any closed proper
analytic subsets. Therefore, if we assume further that T; is smooth over X — A where
A is a closed analytic subvariety of X, then (T; A --- A T},) is nothing but the trivial
extension of the (p, p)-form (Ty A -+ A Tp)|x_a to X.

Following [BEGZ10, Definition 1.21], for a big class a, a positive (1, 1)-current T €
a has full Monge-Ampére mass if

/ (T") = Vol(at).
X

The set of such positive currents in @ with full Monge-Ampére mass is denoted by
&E(a). We will not recall the definition of the volume of big classes by Boucksom
in [Bou02]. We just mention that when the class « is big and nef, one has

Vol(a) = a".
The following lemma will be used in § 5.3.

Lemma 5.4. Let (X, w) be a compact Kahler manifold and let D be a simple normal
crossing divisor on X. Let S be a closed positive (1,1)-current on X so that S|x_p is a
smooth (1,1)-form over X — D which is strictly positive at one point and has at most
Poincaré growth near D. Then the cohomology class a = {S} is big and nef, and
Se&(a).

Proof. Let T be the Kéhler current on X constructed in Remark 1.5. Since T|x_p has
at most Poincaré growth near D, there exists a constant C; > 0 so that

CiT-S=>0.

Pick any point x € D. Then there exists some admissible coordinates (U; zy, . . ., z,)
centered at x so that the local potential ¢ of S satisfies that

t
¢ > ~Cilog(- | |loglz1®) - C,

i=1

for some constant C; > 0. Hence S has zero Lelong numbers everywhere and thus «
is nef. Since S is strictly positive at one point on X — D, it is big by [Bou02]. It follows
from [Gue14, Proposition 2.3] that S € &(«). The lemma is proved. O

Let us recall an important theorem in [BEGZ10].

Theorem 5.5 (BEGZ10, Corollary 2.15]). Let (X, w) be a compact Kihler manifold of
dimension n. Let ay, ..., a, be big and nef classes on X. For T; € E(a;) which are all
smooth outside a closed proper analytic subset A, one has

/ Tl/\---/\Tn:/(Tl/\---/\Tn):al---an.
X-A X
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5.3. Hermitian-Yang-Mills metric and stability. Let (X, w) be a compact Kéhler
manifold and let D be a simple normal crossing divisor on X. As we mentioned in
§ 0.4, for applications of birational geometry, one usually considers more general
polarization by big and nef line bundles. In this subsection, we will prove that a
log Higgs bundle (E, ) on (X, D) is p,-polystable if (E, 0)|x_p admits a Hermitian-
Yang-Mills metric whose growth at infinity is “mild”, where « is certain big and nef
cohomology class. When dim X =1 or D = @ and the polarization is Kéhler, this has
been proved by Simpson [Sim88,Sim90]. As we have seen in Theorem 1.10, when X is
projective and both the first and second Chern classes of E vanish and the polarization
is an ample line bundle, this result has been proved by Mochizuki.

We start with the following technical result, which is strongly inspired by the deep
result of Guenancia [Guel6, Proposition 3.8].

Proposition 5.6. Let (X, w,) be a compact Kdhler manifold and let D be a simple
normal crossing divisor on X. Let (E, 0) be a log Higgs bundle on (X, D). Let a be a big
and nef cohomology (1, 1)-class containing a positive closed (1, 1)-current w € a so that
w|x—p is a smooth Kdhler form and has at most Poincaré growth near D. Assume that
there is a hermitian metric h for (E, 0)|x_p which is adapted to log order (in the sense of
Definition 4.1) and is acceptable (in the sense of Definition 4.2). Then for any saturated
Higgs subsheaf G C E, one has

(5.3.1) 1(G) - a" 1 = /X ) ZTr(\/—_thG(G))/\a)"'l

where Z is the analytic subvariety of codimension at least two so that G|x-z C E|x—-z is
a subbundle, and hg is the metric on G induced by h.

Proof. By Remark 1.5, one can construct a Kdhler current
¢

(5.3.2) T = wy — V=199 log(~ ]_[ log le - a2,
i=1

over X, whose restriction on X — D is a complete Kéhler form wp, which has the same
Poincaré growth near D. Here o; is the section H°(X, Ox(D;)) defining D;, and h; is
some smooth metric for the line bundle Ox (D;). Since we assume that h is acceptable,
(after rescaling T by multiplying a constant) one thus has

|Fi(E)lnwp < 1.
By Lemma 5.1, one has
~1 ® wp <nak Fr(E) <nak 1 ® wp
over X — D.

We first consider the case that G is an invertible saturated subsheaf of E which is
invariant under 8. Then the metric h of E induces a singular hermitian metric hg for
G defined on the whole X, which is smooth on on X° := X — D — Z. The curvature
current V=1Ry, (G) is a closed (1, 1)-current on X — D, which is a smooth (1, 1)-form
on X°. Define by 7 : E|xc — G|x- the orthogonal projection with respect to h and
7t 1 E|[xe — G*|x- the projection to its orthogonal complement. By the Chern-Weil
formula (see for example [Sim88, Lemma 2.3]), over X°, we have

(5.3.3) Ry (G) = Fye(G) = Fu(B)lg + By A B = ¢ AP,

where F,(E)|c is the orthogonal projection of F;(E) on Hom(G, G)|x> = Ox-,and ff €
2/ 0(X°, Hom(G, G1)) is the second fundamental form, and ¢ € 27°(X°, Hom(G*, G))
is equal to 6|g. Hence \/—_thG(G) < V=1F,(E)|c.
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For any local frame e of G|x-, note that
le|? - V=1F4(E)|g = (V-1Fy(E)(e), e)n < (1 ® wpe, e}y = |e]} - wp

Hence V-1F,(E)|c — wp is a semi-negative (1, 1)-form on X°, and thus over X° one
has

—V=1Ry,(G) + T = wp — V=1F4(E)|c = 0

Since we assume that (E, h) is adapted to log order, (G™'|x—z, h;'[x-7) is thus adapted
to log order for the log pair (X—-Z,D—Z2). By Lemma 4.5 and (5 3.2), ‘/_Rhc (G)+T
extends to a closed positive (1, 1)-current on X — Z. Since Z is of codlmensmn at least
two, a standard fact in pluripotential theory shows that —\/—_1RhG (G) + T extends to
a positive closed (1, 1)-current on the whole X.

Denote by s € H*(X, E ® G™!) the section defining the inclusion G — E. We fix a
smooth hermitian metric hq for G and we define a function H := |s|* _| = hg - hy' on

X — D. Then
(5.3.4) V=18dlog H = V=1Ry, (G) — V=1Ry,(G).

Hence there is a constant Cy > 0 so that

h-hy?

(5.3.5) V-1d0log H + CyT > T.

By Lemma 5.4, w € &(a). Since V=1Rp,(G) is a smooth (1, 1)-form on X, it follows
from Theorem 5.5 that

/ V=1R;,,(G) A" = ¢1(G) - ™!
xe

To prove (5.3.1), by (5.3.4) and the above equality it suffices to prove that
(5.3.6) / V—-190log H A ™! = 0.
XO

We will pursue the ideas in [Guel6, Proposition 3.8] to prove this equality.

Let us take a log resolution s : X — X of the ideal sheaf .# defined by s € H*(X, E®

G 1), with Oy ( —A) = y*# and D := ;" 1(D) a simple normal crossing divisor. Let us
denote by (E, 0) the induced log Higgs bundle on (X, D) by pulling back (E, 0) via p.
Then the metric h := p*h for (E, 0)|; <_p is also adapted to log order and acceptable by
Lemma 4.3.

Note that Supp(Ox/.#) = Z. Write G := p*G. There is a nowhere vanishing
section

§e H'(X,E® G ® Og(-A))

so that yi*s = § - 04, where o4 is the canonical section in H(X, Oy (A)) which defines
the effective exceptional divisor A.

Fix a Kahler form & on X, as Remark 1.5 we construct another Kihler current

(5.3.7) T =& — V-1d0log(- ]—[ logle - Gil? ),
i=1 '

over X, whose restriction on X — D is a complete Kéhler form, which has the same
Poincaré growth near D. Here 6; is the section H°(X, Ox(D;)) defining D;, and h; is
some smooth metric for the line bundle O3 (D;).
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Let us fix a smooth hermitian metric hy for O3 (A). Write H:=|5 |i — Since
Hy ey

his adapted to log order and s is nowhere vanishing, there is a constant C;, C; > 0 so
that

(5.3.8) logH > Cypp — Co,

where we denote by
¢
pp = —log(— 1_[ log |e - &ilgi).
i=1

Since h := p*h for (E, é) |x_p is acceptable, by same arguments as those for (5.3.5), one
can show that

V-19dlog H + CsT > T
over X —D for some constant C3 > 0. Note that the local potential of V=199 log H+C5T
is bounded from below by (C; + C3)¢p according to (5.3.8). By [Guel4, Proposition
2.3], one has

v—l&élogI—NI + Cg'f S 8({C3T})
It follows from (4.1.1) that p*w < C4T for some constant C4 > 0. By Lemma 5.4 again,
Ww € E(p*a). Hence by Theorem 5.5 one has

/ (V=100log H + C3T) A ™ ! = {CsT} - pa™ 1.
pHXO)
Recall that T € E({T}) by Lemma 5.4. Hence
/ CsT A ™ = {CsT} - pra™ .
P (X)
One thus has
(5.3.9) V-18dlog H A p*™ ! = 0.
pH(Xe)
Note that over X — D, one has
V-19dlog H + [A] — V=1Ry, (A) = y*V-1ddlog H
where [A] is the current of integration of A. Hence over y~1(X°) ~ X°, one has
(5.3.10) V-1d9log H — V=1Ry,, (A) = y*V-13dlog H.
By Theorem 5.5 again,
(5.3.11) V=1R;,, (A) A o™t = ¢ (A) - o™ = 0,
pH(XO)
where the last equality follows from the fact that A is p-exceptional. (5.3.9), (5.3.10)
together with (5.3.11) shows the desired equality (5.3.6). We finish the proof of (5.3.1)
when rank G = 1. L
Assume that rank G = r. We replace (E, G,Nh) by the wedge product (E, 0,h) =

N (E, 0, h). By Lemma 5.2, the induced metric h is also acceptable and one can easily

check that it is also adapted to log order. Note that det G is also invariant under 6,
and that
detG — A'E.

We then reduce the general cases to rank 1 cases. The proposition is thus proved. O

Let us state and prove the main result in this section.
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Theorem 5.7. Let X be a compact Kdhler manifold and let D be a simple normal cross-
ing divisor on X. Let a be a big and nef cohomology (1,1)-class containing a positive
closed (1,1)-current w € a so that w|x_p is a smooth Kihler form and has at most
Poincaré growth near D. Let (E, 0) be a log Higgs bundle on (X, D). Assume that there
is a hermitian metric h on (E, 0)|x_p such that

e it is adapted to log order (in the sense of Definition 4.1);
e it is acceptable (in the sense of Definition 4.2);
e it is Hermitian-Yang-Mills:
AuFr(E)t =o.
Then (E, 0) is py-polystable.

Proof. We shall use the same notations as those in Proposition 5.6. Let G be any satu-
rated Higgs-subsheaf G C E, and denote by Z the analytic subvariety of codimension
at least two so that G|x_z C E|x_ is a subbundle. By the Chern-Weil formula again,
over X° := X — Z — D we have

AuFiy(G) = ApFr(E)lG + Ap(By A B— @ A D)

A, TrF,(E
= A BB + D)

rank E
_ A,Tr(Fr(E)) - _
= ranT@“G‘*‘Aw(ﬁh/\ﬁ—(P/\‘Ph)-

where B € &/°(X°, Hom(G, G1)) is the second fundamental form of G in E with
respect to the metric 4, and ¢ € .&7*°(X°, Hom(G*, G)) is equal to 0|g-.
Hence

/ Tr(V=1F,(G)) A 0" ! = / Tr(Aw\/—_thG(G))w—n
X° X° n

n
_ / rankG o (VIIF, (B)
o rank E n

®T]G+Aw(ﬁh/\ﬁ_§0/\¢h)

+TrA,(V=15, A B — V=1¢p Aah)%n

rank G _ "
=/ Tr(V=-1F,(E)) A "™ = (1815 + lol;) —
xo rank E n

By Proposition 5.6 together with the above inequality, one concludes the slope in-
equality

Ha(G) < po(E)
and the equality holds if and only if f = 0 and ¢ = 0. We shall prove that if the above
slope equality holds, G is a sub-Higgs bundle of E, and we have the decomposition

(E,0) = (G, 0lc) @ (F, 0F)

where (F, 0r) is another sub-Higgs bundle of E.

Set rank E = r and rank G = m. We first prove that G is a subbundle of E. It is
equivalent to show that det G — A"E is a subbundle, and we thus reduce the problem
to the case that rank G = 1. Assume that y,(G) = py(E) and thus g = 0 and ¢ = 0.
By (5.3.3), over X° one has

(5.3.12) V=1R},,(G) = V=1F4(E)|g = ~Tlx-,

where T is the Kahler current defined in (5.3.2). By Lemma 4.5, V=1Rp,, (G)+T extends
to a closed positive (1, 1)-current on t X — Z, and thus to the whole X.
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Assume now xy € X is a point where (E/G),, is not locally free. Take a local

holomorphic frame e of G on some open neighborhood (U;zy,...,z,) of x, and a
holomorphic frame ey, ..., e, of E. Then e = },I_, fi(x)e;, where f; € O(U;) so that
fi(xo) = --+ = fr(x9) = 0. By the asssumption that h is adapted to log order, one

concludes that
¢
(5.3.13) log le|? < Cilog(|z1]* +- -+ + |z4|*) + Cs log(—log(l—[ |z17))
i=1

for some positive constants C; and C,. On the other hand, by (5.3.12) on U we have
V-19dlog le|} = —V-1Ry,(G) < T.

By the construction of T, we conclude that

¢
log le|? > Cs log(—log(l—[ 1212)) + Ca,
i=1
for some C3 > 0 and C; < 0. This contradicts with (5.3.13). Hence we conclude that
when the slope equality holds, G is a subbundle of E.

We now find the desired decomposition of (E, §). By the above argument, when
the slope equality holds, (G, 0]) is a Higgs subbundle of (E, 8) (not assumed to be
rank 1 now), and f = 0 and ¢ = 0. This means that the orthogonal projection 7 :
E|lx-p — G|x-p is holomorphic, that G* is a holomorphic subbundle of E|x_p, and
that

(5.3.14) (E,0)x-p = (G, 0l)|x-p ® (G*, 0lg+).

We shall prove that 7 extends to a morphism 7 : E — G so that # o1 = 1. For
any point xy € D, we pick an admissible coordinate (U;zy, ..., z,) centered at x, and
a holomorphic fame (e, ..., e,) for E|y adapted to log order so that (e;,...,ep) is a
holomorphic fame for G|y. Write 7(ej|x-p) = Xi_; fi(x)e;, where fi(x) € O(U - D).
For j = 1,...,m, one has 7(ej|x-p) = e; and it extends naturally. For j > m, over
U* = U — D one has

4
C(=log(| | 12I)™ = lejl; = Ix(ep)l} = Hyl £l
i=1

for some C,M > 0, where H;; := h(e;, e;) with (Hjj)1<; j<r adapted to log order. Hence
each |fi| is locally bounded from above on U, and it thus extends to a holomorphic
function on U. We conclude that 7 extends to a morphism 7 : E — G, whose rank
is constant and 7 o 1 = 1, where 1 : G — E denotes the inclusion. Let us define by
F := ker 7, which is a subbundle of E so that E = G & F. Note that F|x_p = G*. By
(5.3.14) together with the continuity propery we conclude that F is a sub-Higgs bundle
of (E, 0), and that (E, 0) = (G, 0|g) ®(F, 0|r). Since h|g (resp. h|r) is a Hermitian-Yang-
Mills metric for (G, 0|g) (resp. (F, 0|r)) satisfying the three conditions in the theorem,
we can argue in the same way as above to decompose (G, 8|¢) and (F, 6|r) further to
show that (E, 0) is a direct sum of fi,-stable log Higgs bundles with the same slope.
Hence (E, 0) is py-polystable. We prove the theorem. O

5.4. Application to toroidal compactification of ball quotient. LetI' € PU(n, 1)
be a torsion free lattice, and let Bn/r be the associated ball quotient. By the work

of Baily-Borel, Siu-Yau and Mok [Mok12], Bn/r has a unique structure of a quasi-
projective complex algebraic variety (see for example [BU20, Theorem 3.1.12]). When
the parabolic subgroups of I' are unipotent, by the work of Ash et al. [AMRT10] and
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Mok [Mok12, Theorem 1], Bn/r admits a unique smooth toroidal compactification,

which we denote by X. Let us denote by D := X — Bn/r the boundary divisor, which
is a disjoint union of abelian varieties. Let gg be the Bergman metric for B", which
is complete, invariant under PU(n, 1) and has constant holomorphic sectional cur-
vature —1. Hence it descends to a metric @ on X — D. If we consider w as a met-
ric for Tx(—log D)|x-p, by [To93, Proposition 2.1] it is good in the sense of Mum-
ford [Mum?77, Section 1]. Therefore, by for any k > 1, it follows from [Mum77,
Theorem 1.4] that the trivial extension of the Chern form c¢;(Tx_p, @) onto X de-
fines a (k, k)-current [ci(Tx_p,w)] on X, which represents the cohomology class
cx(Tx(=log D)) € H**(X). Let us first prove (0.1.3), which is indeed an easy compu-
tation.

For any xy € X — D, we take a normal coordinate system (z,.. ., z,) centered at x
so that
w=V-1 Z Oemdze N dZ,, — Z Cjk[ijZk + O(|Z|3)
1<t,m<n J.k.t,m

where ¢ k¢ is the coefficients of the Chern curvature tensor

i ., d
R,(Tx) = Z Cjk{’mdzj ANdzZp ® (8_25) ® %
J.k,t,m
By [Mok8&9, p. 177], one has
(5.4.1) Cjkem(x0) = —(8jk8em + OjmOke)-
Hence
i
C1 (TX—Da C()) |X0 = __(n' + 1)w|xo
27
_ tr(Ry(Tx-p) A Ry(Tx_p)) — tr(R,(Tx_p))*
CZ(TX—Ds w)'xo - 2
81
(Do Aoy = (n+1)20 Aol

872
This implies that
nei(Tx-p, @)° = 2(n + 1)ca(Tx-p, @) = 0.
We thus conclude that the Chern classes ck(Q)l( (log D)) satisfies
ncl(Q)l((logD))2 -2(n+ 1)02(Q§(10gD)) = 0.
Hence (0.1.3) in Theorem B holds.
For the log Hodge bundle (E, §) = (EY° @ E®L, ), given by
EM = Qy(logD), E™ :=0x
with the Higgs field 6 defined in (0.1.1), we shall prove that it is y,-polystable for the

big and nef polarization « in Theorem 5.7. We equipped (E'° @ E®!)|x_p with the
metric

(5.4.2) h:=w"'®h,

where h, is the canonical metric on Ox_p so that |1],, = 1. Recall that the curvature
Fy,(E) of the connection Dy, := dj + 0 + 0}, is

Fi(E) = Ry(E) + [6, 03],

where Ry (E) is the Chern curvature of (E, h). Let us now compute Fj,(E), which is
also an easy exercise.
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To distinguish the sections of Higgs bundles and forms, we write e; := dz;, and
denote by ey = 1 the constant section of Ox. Hence (e, €1, . . ., €,) is an orthonormal
basis at x, with respect to the metric h, and

0(ep) =0, 0O(ej)) =e®dz; for i=1,...,n.

Moreover,
—_— n —_—
Oneoly,) = Z ejly, ®dzj; Onp(e)) =0 for i=1,...,n
=1
Then one has
Rh(E) = —Cjkmedzj N dZi ® (er)" ® ep.
By (5.4.1),fori=1,...,n,

\/_Fh(E)(el lxy) = Z \/_c]km,dzj A dZi @ eply, + Z \/_dzk A dz; ® exly,

j.k,m

= > V=1ldzj A dz @ eily, + )| V=1dzi A dZk © exls,
J k
+ Z V=1dzp A dz; ® ey, = 0 ® ejly,.

Also,
V=1Fs(E)(eol,) = V=160 A Ox(eol,) = @ ® ol
In conclusion, one has
V-1F(E) =0 ®1,

In particular, h is a Hermitian-Yang-Mills metric for (E, 0)|x_p. We shall show that it
satisfies the three conditions in Theorem 5.7. Indeed, we only have to check the first
two conditions since V—1F,(E)* = 0.

We first note that v has at most Poincaré growth near D in the sense of Defini-
tion 1.4. Indeed, this follows easily from the Ahlfors-Schwarz lemma (see for ex-
ample [Nad89, Lemma 2.1]) since the holomorphic sectional curvature of w is —1.
Hence for any admissible coordinate system (U;zy, ..., z,) as in Definition 1.3, one
has |F(E)|nwp, < C, where wp is the Poincaré metric on U*.

By the following result, we see that h is adapted to log order.

Lemma 5.8 ([Mok12, eq. (8) on p. 338]). Let (X, D) be as above. Then for any x E D,
there is an admissible coordinate (U; z1, . . ., z,) at x so that the frame z; a‘i , 2
is adapted to log order (in the sense of § 4.1) with respect to the above metric .

Therefore, the metric h for (E, 8)|x_p satisfies the three conditions in Theorem 5.7.
In conclusion, (E, 0) is p,-polystable for the big and nef class @ in Theorem 5.7

To finish the proof of Theorem B, we have to show that ¢; (Kx + D) can be made as
a polarization in Theorem 5.7, which follows from the following result.

Lemma 5.9 ([Mok12, Proposition 1]). The Kdhler form %a} on X — D defined above
extends to a closed positive (1, 1)-current ® € c¢1(Kx + D) with zero Lelong numbers. In
particular, Kx + D is big and nef.

Let us provide a quick proof here for completeness sake.

822 "’32,,1 32,,
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Proof of Lemma 5.9. Note that the volume form " defined a metric h, for (Kx +
D)|x_p, which is adapted to log order by Lemma 5.8. By (5.4.1), one has

Ric(w) = —-(n+1)ow.

Hence V-1Ry, ((Kx + D)|x-p) = (n + 1)w. By Lemma 4.5, h, extends to a singular
metric h, for Kx + D so that its curvature current V-1R; (Kx + D) is positive. The

Lelong number of V-1R; (Kx+D) is zero everywhere since hy is adapted to log order.
This shows that Kx + D is big and nef, which is ample over X — D. mi

6. CONJUGATE NON-COMPACT BALL QUOTIENT

As an application of Theorems A and B, we shall prove that the conjugate of non-
compact ball quotient under an automorphism of C is still a ball quotient. It was
proved by Kazhdan [Kaz83] for arithmetic lattice, and by Mok-Yeung [MY93] and
Baldi-Ullmo [BU20] for non-arithmetic lattice. The cocompact case can be easily
proved using the Miyaoka-Yau inequality in [Yau78].

Let us make the following conventions for this section. Let X be a complex projec-
tive variety with X, the corresponding algebraic variety over C. For any coherent
sheaf & on X, denote by &,, the corresponding coherent sheaf on X,j,. Conversely,
for any coherent sheaf &,); on X,);, we denote by & the corresponding coherent sheaf
on X.

Proof of Corollary C. We first assume that parabolic subgroups of I' are unipotent.
By [Mok12, Theorem 1], there is a toroidal compactification X for the ball quotient
X = Bn/r, so that D := X — X is a smooth divisor. Moreover, X is projective, whose al-

gebraic structure is unique, denoted by X alg- By Grothendieck’s comparison theorem
(see e.g. [CS14, Theorem 11.1.2]), there is a canonical isomorphism

(6.0.1) ¢ H(Xag) — H'(X,C).

0

Consider the conjugate variety X,, by the Cartesian diagram

—0 O_—l J—
X alg > X alg

l l

Spec(C) L} Spec(C)

Then D;’lg := 0~ (D) is also a smooth divisor on the smooth projective variety )_(Zlg.

Denote by (X ’ D?) the analytification of (X D;’lg). We are going to show that the

(o}
alg>
projective log pair (X ?, D) satisfies all the conditions in Theorem A.

We set up the notations in what follows. For a coherent sheaf %, on X, we

denote by Ta‘l’g := (07')*Falg, whose analytification is denoted by F7.

Fix an ample line bundle L,;; on X alg- Then L7 is an ample line bundle over X°.
By [CS14, p. 473] 07! induces natural isomorphism

(6.0.2) (6™ H' (Xag) = H'(Xgy,).
and

(6.0.3) ((;—1)*g2;'_<alg (log Dytg) — Q;_(:lg(log D},)-
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Moreover, for any vector bundle E,j; on X alg> one has

(6.0.4) @(ck(Eag)) = ck(E)
and
(67" (ck(Ear)) = ck(Egyg)-
By (0.1.3) in Theorem B, one has

1 n 1 2 _
(6.0.5) ZCZ(Q)_((log D)) - — 101(97(10g D))“ =0.
It then follows from (6.0.3) and (6.0.4) that
1 o n 1 o2 _
(6.0.6) 2c2(Q)—(0 (logD?)) — -~ 1cl(an(logD ) =0.

By Theorem B, the log Higgs bundle (E, 0) := (Q)l_((log D) & Ox, 0) defined as (0.1.1)
is pr-polystable. By (6.0.3), its conjugate via o is the log Higgs bundle (E, 6°) :=
(Q;_(G(log D?) ® O7, 07), where 0 is defined as (0.1.1). Let # C E° be any saturated

coherent Higgs sub-sheaf. Then F7  is a Higgs subsheaf of (E, ). Note that we
always have the slope inequality uz(¥° ) < pr(E), and the equality holds if and
only if (T”_l, 0l #o-1) is a direct summand of (E, 6). It then follows from (6.0.3) and
(6.0.4) that

(6.0.7) pre(F) = p(F° ) < pr(E) = ppo (E°).

Note that the conjugate of (F° _1)" = F for coo~! = 1. We thus conclude that, when
the equality (6.0.7) holds, (F, 6°|#) is a direct summand of (E?, 67). Hence the log
Higgs bundle (E?, 69) is pro-polystable.

In conclusion, the projective log pair ()_(0, D?) satisfies all the conditions in Theo-
rem A. Applying Theorem A, we conclude that the universal cover of X? = X ’-D°
is also the complex unit ball B"”. This proves the corollary when parabolic subgroups
of T are unipotent.

In the general case, there is a finite index subgroup IV C T so that parabolic sub-

groups of I” are unipotent (see for example [BU20, §3.3]). Denote by X := B”/r and

Y = Bn/r/. Recall that there are unique algbraic varieties X,; and Yy, whose ana-
lytifications are X and Y. The finite cover Y — X induces a finite étale surjective
morphism Yy, — Xjje. Since the base change of an étale morphism is étale, we con-
clude that Yﬁg - X;g is also a finite étale surjective morphism. By the above result,
Y? is the ball quotient. Since Y° — X7 is a finite cover, X’ is also the ball quotient.
The corollary is proved. O

APPENDIX A. METRIC RIGIDITY FOR TOROIDAL COMPACTIFICATION OF NON-COMPACT
BALL QUOTIENTS

by BENoiT CADOREL AND YA DENG

The main motivation of this appendix is to provide one building block for Theo-
rem A. Our main result, Theorem A 8, says that there is no other smooth compactifica-
tion for non-compact ball quotient than the toroidal one, so that the Bergman metric
grows “mildly” near the boundary. Besides its own interests, this result is applied in
this paper to show that

o the smoothness of D in Theorem A is necessary if one would like to characterize
non-compact ball quotients;
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o the “moreover”-statement of Theorem A: the projective log pair (X, D) is the toroidal
compactification of a non-compact ball quotient.

A.1. Toroidal compactifications of quotients by non-neat lattices. In this sec-
tion, we recall a well known way of constructing the toroidal compactifications of ball
quotients in the case where the lattice has torsion at infinity. The reader will find more
details about the natural orbifold structure on these compactifications in [Eys18]. For
our purposes, the basic result given in Proposition A.1 will be sufficient.

Recall that we say that a lattice I' ¢ PU(n, 1) is neat (cf. [Bor69]) if for any g € T,
the subgroup of C* generated by the eigenvalues of g is torsion free. This implies
that I is torsion free and that all parabolic elements of I' are unipotent, so that the
toroidal compactifications of Bn/r provided by [AMRT10, Mok12] are smooth (there
is no "torsion at infinity").

Proposition A.1. LetT' ¢ PU(n, 1) be a torsion free lattice, and let T’ C T be a finite
index normal neat sublattice. Let U = Bn/r, U = Bn/r/, and denote by X’ the smooth
toroidal compactification of U’ = Bn/r/ as constructed in [AMRT10, Mok12].

Then the natural action of the finite group G = Iﬂ/r/ on U’ extends to X', and the

quotient X = X//G is a normal projective space, with boundary X — U made of quotient
of abelian varieties by finite groups. Moreover, when T is arithmetic, X coincides with
the toroidal compactification of U constructed in [AMRT10].

Remark A.2. By [Bor69, Proposition 17.4] in the arithmetic case, and [Bor63], or
[Rag72, Theorem 6.11] in the general case, any lattice in PU (n, 1) admits a finite index
neat sublattice.

Before explaining how to prove Proposition A.1, let us recall the construction of X’
as it is defined in [Mok12] (see also [Cad16] for a similar discussion).

Each component D of X’ — U’ is associated to a certain I'"-orbit of points of dB",
whose points are called the I"-rational boundary components of dB" (cf. [AMRT10,
Chapter 3] or [Mok12, §1.3]). Let b € dB" be such a point, and let N, ¢ PU(n,1)
the stabilizer of b. This is a maximal parabolic real subgroup of PU(n,1) ; let us
denote by W, its unipotent radical. This group can be written as an extension 1 —

Uy, — W, = A, — 1, where A, = C"!, and U, = R is the center of W,. Let
L, =N b/Wb' This reductive group can be embedded as a Levi subgroup in Nj, so that

Np = W}, - Ly. Moreover, we have a decomposition L, = U(n—1) X R, where the factor
U(n — 1) corresponds to complex rotations around the axis Cb, and R corresponds
to transvections of B" along the axis Rb (this description of W, can be obtained e.g.
by specializing the discussion of [BB66, Section 1.3] or [AMRT10, Section 4.2] to the
case of the ball).

This Lie theoretic description of N, can be understood more easily by expressing
the action of the previous groups on the horoballs tangent to b. Let (SéN))NZO be the

family of these horoballs. Each SISN) C B”" can be described as an open subset in a
Siegel domain of the third kind, as follows:

(A1.1) SN = {(2,2,) € C"' X C | Imz, > ||2]] + N}

We have S;O) = B", and when b = (0, ..., 0, 1), the change of coordinates between the

two descriptions of the ball is given by the Cayley transform
w1 Wno1 1+ wy

(0)
R , 1 €S .
1-w, 1-w, 1- wn) (0....0.1)

(W17 cee Wn—h Wn) € Bn = (Zl, Zn) = (
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The previous expression for SIEN) can be used to give explicit formulas for the action
of W, and L, on the ball. If g € W,, we can write g = (s,a) accordingly to the

ets

decomposition W 2 Up x Ap (Up = R, Ay = C"1), and we have, for any (w',wy) €
(N)

S
b

(A.1.2) g-(Z,zy) = (Z +a,z, +i|a||* + 2ia- 2 +5).

We check easily that S;N) is preserved by W;. Also, forany g € L, ~ U(n— 1) X R,
we can write g = (r, t), and we then have

(A.1.3) g-(Z,zy) = (e'(r-2),e"z,).
Note that the element g above sends SéN) onto SlgemN).

We are now ready to describe the quotients of SIEN) by the action of I' N Nj,. Note
first that since I"” is neat, we have I N N, C W;. Then, by the discussion above, we
obtain a decomposition as sets N}, =y (C"xR)x(U(n—1)xR), in which the elements
of I N Nj, can be written as (a, t,Id, 0). It also follows from [Mok12] that I" NU, = Zt

(N)
for some 7 € U, = R. This last fact permits to form the quotient GIEN) =5 U, N T

using (A.1.1), we can also express the latter quotient as an open subset of C"~1 x C*:
2 ’ 2
GV = (W) € T X T | Jwale I < e FNY,

and the quotient is then realized by the map (z/, z,) € SISN) — (2, e¥zn) € GIEN).
The group A, = 7(I” N W) € C"!is an abelian lattice of rank 2(n — 1), which
acts on GIEN) Cc C"1xC*as

2 2_4m—=
7||a|| T @

a-(z',z,) = (Z +a,e” “zn),

Clearly, the closure GIEN) in C" is an open neighborhood of C"~! x {0}. We can form
the quotient
(N)
) _G
Qb = b /Ab

-1
which is then isomorphic to a tubular neighborhood of the abelian variety cr /A, 10
some negative line bundle. Finally, the toroidal compactification X’ can be obtained

by glueing the open varieties QISN) to U’ (as b runs among a system of representatives
of the rational boundary components, and N is chosen large enough for each cusp).

Our claims about X can be derived from the following lemma.

Lemma A.3. Let b € dB" be a I"-rational boundary component, and let g € T. Then
the point b’ = g - b is also I''-rational, and there exists N, N’ > 0, for which g induces
an isomorphism S;N) ER S;{W)
oM, o),

, yielding in turn a unique compatible biholomorphism

Proof. As I is torsion free, a point z € dB" is ['-rational if and only if W, N T" # {e}
(see [Mok12, §1.3]). Since g normalizes I, we have g(W, N I")g™! € W,y NT” so ' is
I["-rational if b is.

As for our second claim, since the set of horoballs is preserved by the action of
PU(n, 1), we may find N, N’ such that g induces a isomorphism SlEN) — SIEEV). Let

x’, x,) (resp. (v, y,)) be standard coordinates on SN (resp. SNY as in (A1.1). Tt
p. (V.Y b P- 9
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is always possible to choose the coordinates so that (v/,y,) = (x’,x,) o u for some
u € U(n) satisfying u - b* = b. Then ug € N, and the formulas (A.1.2) and (A.1.3)
imply that (x’, x,) o (ug) is an affine function of (x’, x,). Thus (v, y,) o g = f(x, xp)
for some affine map f.

Since g normalizes I/, we have g(I’ N Uy,)g™! = I" N Uy, so the map SIEN) ER SIgN,)
passes to the quotient to give amap g : Gl()N)—>Gl(){W). Using an explicit expression for
the affine map f, we find an (a priori multivaluate) expression for g as
(N)
br
for some A € M,_1(C), some vectors u,b,z; € C* ! and C,a € C. Since the for-

(
b

(7', zn) € G,EN) (A7 + ulogz, +z), Cz2e"%) e G

mula above must yield a well-defined, invertible map G N Gl(}],), we must have

u = 0,a = 1. This shows that g has unique holomorphic extension GISN) — Gl()fw).
Finally, as g normalizes I”, this map passes to the quotient by A, = 7(I' N W;) (resp.
A} = r(FNWy)), which gives a uniquely defined biholomorphism QZ(JN) — Q}(}J’V ). o

Remark A.4. Note that it is easy to describe the action of the stabilizers of the bound-
ary components of X’ —U’. Assume indeed that g € T preserves one of the I"-rational
boundary components b € dB". Then we can write g = u - d, in the Levi decomposi-

tion N, = W, - Ly, and further decompose u = (s, a) (in W, St Up X Ap),and d = (r,t)
(inLp = U(n—1) XR). Now, since I” C T is of finite index, and since I” "N, C W}, the
element d has finite order. This implies that ¢ = 0, so d is simply a unitary rotation
around the complex axis Cb.

It is now clear from the explicit formulas (A.1.2) and (A.1.3) that the action of g on

G[SN) can be described as

2?”||a||2—4”a~(rz')+2i”

g-(Z,zy) = (rz' +a,e” T T 5zn),

and this formula induces in turn a natural action on QZSN). We see in particular that

Cn—l

g acts on the abelian variety =

Un-1).

, Viaan affine map, with linear part belonging to

Going back to the proof of Proposition A.1, we see that Lemma A.3 permits to
define a unique action of the quotient G = 1ﬂ/r/ on X’ compatible with its natural

action on U’. The complex projective space X can be defined as the quotient X,/G.
The following lemma ends the proof of Proposition A.1, and clarifies the link with
the construction of [AMRT10].

Lemma A.5. The variety X defined above does not depend on the choice of T’. When the
lattice T is arithmetic, X coincides with the toroidal compactification of U as constructed
in [AMRT10].

Proof. Let I'",T” c T be two neat lattices of finite index. We want to show that the
varieties constructed from I and I'” are the same. Since I' N [ also has finite index
in I', we may assume I C I". The previous discussion shows that the action of two
lattices I'”” C I” are compatible with each other on each open set GIEN), which suffices
to prove the first point. In general, we can also argue as follows.

For any arithmetic quotient of a hermitian symmetric space Q/r, the construc-
tion of a toroidal compactification of [AMRT10] depends on a certain choice of I'-
admissible polyhedra for each rational boundary component (see [AMRT10, Defini-
tion 5.1]). In the case where Q = B", since dimgr U, = 1 for any b € 9dB", there
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is only one such possible choice (cf. [loc. cit, Theorem 4.1.(2)]). Both claims then
follow from the functoriality of toroidal compactifications (see [Har89, Lemma 2.6]),
since “choices” of polyhedra admissible for two lattices I” C T are thus automatically
compatible with each other. O

Note that even though this construction of X is well adapted to our purposes, it
should not be used to define X as an orbifold, as it has the drawback of producing
artificial ramification orders along the boundary components of X. As explained
in [Eys18], a better way of proceeding would be to construct directly open neigh-
borhoods of the components of X — U as stacks, before glueing them to U.

A.2. Main results. Let us first begin with the following lemma.

Lemma A.6. Let Y be the toroidal compactification of the ball quotient U := Bn/r by a
torsion free latticeI' C PU(n, 1) whose parabolic isometries are all unipotent. Let X be
another projective compactification of U, and assume one of the following:

(a) X has at most quotient singularities,
(b) or, more generally, X has at most kit singularities.
Then the identity map of U extends to a birational morphism f : X — Y.

Proof. The identity map of U extends to a birational map f : X --» Y. It suffices to
show that f is regular. Assume by contradiction that f is not regular. One can take

a resolution of indeterminacy i : X — X for f so that Hlr oy p Y (U) = Uis an
isomorphism and

By the rigidity result (see [DebOl Chapter 3, Lemma 1.15]), there is at least one fiber
p~1(z) with z € D which cannot be contracted by f Clearly, we have f (1 (2)) C
Y U.

(1) If X has quotient singularities, [Kol93, Theorem 7.5] implies that every fiber
of p is simply connected. As Y — U is a disjoint union of Abelian varieties A

by [AMRT10,Mok12], the image off : 1”1(z) — Y — U must be a point.
(2) If we assume only that X has klt singularities, we can use the work of Hacon-
McKernan [HMO07] which implies that every fiber of y is rationally connected.

In this case, f(/fl(z)) is also a point since abelian varieties do not contain
rational curves.

This is a contradiction in both cases. ]
Let us introduce a natural class of pairs under which our rigidity theorem will hold.

Definition A.7. Let (X, D) be a pair consisting of normal algebraic variety and a
reduced divisor. We say that the pair (X, D) has algebraic quotient singularities if it
admits a finite affine cover (Xj)es, such that each (X;, D N X;) is the quotient of a
smooth SNC pair (U;, D;) by a finite group G; leaving D; invariant.

We can now state our main result as follows.

Theorem A.8. LetU := Bn/r be an n-dimensional ball quotient by a torsion free lattice
I' ¢ PU(n,1). Let X be a normal compactification of U, and let D := X — U. Assume
one of the following:
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(1) D is a reduced divisor, and the pair (X, D) has algebraic quotient singularities;
(2) the variety X has at most klt singularities.

Let DY < D be the divisorial part of D. If the Kihler-Einstein metric w for Tx (—log DW)|y
is adapted to log order near the generic point of any component of DV, then (X, D) iden-
tifies with the toroidal compactification of U.

Remark A.9. (1) Note that if (X, D) has algebraic quotient singularities, then X is
klt; however the proof in case (a) will not appeal to the difficult result of [HM07]
which was used in Lemma A.6. Note also that for any lattice I' ¢ Aut(B"), if X is

the toroidal compactification of U = Bn/r described in Section A.1, then the pair
(X, X — U) has algebraic quotient singularities. This class of pairs seems then to
be a natural setting for Theorem A.8 to hold.

(2) As an easy consequence of the case (b) above, we can remark that there is no kit
compactification X of U such that X — U has codimension > 2.

Corollary A.10. With the same assumptions as in Theorem A.8, if X is smooth and D
has simple normal crossings, then D is in fact smooth, and each component is a smooth
quotient of an abelian variety A by some finite group acting freely on A.

Let us prove Theorem A.8. For the time being, we do not distinguish between our
two hypotheses on X. Let I c T be a subgroup of finite index so that all parabolic
elements of I'” are unipotent. Writing U’ := Bn/r/, this gives a finite étale surjective
morphism y : U" — U.

Let X’ be the normalization of X in the function field of U’: this is a normal pro-
jective variety X’ compactifying U’ so that y extends to a (unique) finite surjective
morphism p : X’ — X (see e.g. [AHCG11, Chapter 12, §9]). Let us recall how to
construct X’ . We first take an arbitrary smooth projective compactification X of U’
so that iy extends to a rational map fi : X --» X. We then take a further blow-up
X’ — X so that its composition with /i, denoted by y/ : X’ — X, is a generically

finite surjective morphism. Take a Stein factorization X’ — X’ L X for 1’ Then
p : X" — X is a finite surjective morphism with X’ normal projective variety. One
can check that such a morphism p does not depend on the choice of X and X".

Lemma A.11. The variety X" has one of the following types of singularities:

(a) if the pair (X, D) has algebraic quotient singularities, then X’ has algebraic quo-
tient singularities ;
(b) if X has klt singularities, then X’ also has kit singularities.

Proof. The case (b) is easy to settle, since klt singularities are preserved under finite
surjective morphisms (see [KM98, Corollary 5.20]). Let us now deal with the case
(a). Note that the statement is local on X, so since (X, D) has algebraic quotient
singularities, we can assume that there exists a finite cover 7 : Z — X such that
E = 771(D) has simple normal crossings. In this setting, (X, D) is the quotient of
(Z,E) by a finite groupoid G leaving E invariant. Let Z’ be the normalization of the
fiber product Z xx X’. We get a commutative diagram:

7z — X

b

Z—T>X
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The map q : Z' — Z is a finite dominant morphism between normal varieties, with
Z smooth. Moreover, it is étale above Z — E, where E is SNC. Hence, [Kol07, Theo-
rem 2.23] implies that Z’ has abelian quotient singularities. To conclude, remark that
Lemma A.12 below implies that X’ is the finite quotient of Z’ by the groupoid G. In-
deed, with the notations of this lemma, it suffices to check that R(Z’ )g = R(X"). This
can be seen easily from the identifications R(Z)9 = R(X) and R(Z’) = R(Z) ®g(x)
R(X"). O

In the above proof, we made use of the following simple lemma, that we include
for completeness.

Lemma A.12. Let f : M — N be a finite surjective morphism between two normal
reduced schemes. Assume that M is acted upon by a finite groupoid G, and that f is
G-invariant. Suppose in addition that R(M)Y = R(N), where R(M), R(N) are the rings
of rational functions on M, N. Then N is the quotient of M by G.

Proof. Tt suffices to show that f,(Oy)9 = Oy. This is a local statement on the base,
so we may assume that N = Spec A, M = Spec B, and A is integral. We then have a
finite extension A C B. Let s € BY. Then s € R(B)Y = R(A) by assumption. As the
element s is finite over A, and A is integrally closed, this implies s € A. This gives the
result. O

Let Y’ be the toroidal compactification of U’, so that the boundary A := Y’ - U’ is
a smooth divisor.

Lemma A.13. The identity map on U’ extends as an isomorphism f : X' — Y.

Proof. By Lemma A.6 and Lemma A.11, the identity map of U’ extends to a birational
morphism f : X’ — Y’ in case (a), or in the more general case (b). From now on, we
will not distinguish between these two cases anymore.

Assume by contradiction that f is not an isomorphism. As Y’ is smooth, it follows
from [KM98, Corollary 2.63] that the exceptional set Ex(f) is of pure codimension
one. Thus, the birational morphism f must contract at least one irreducible divisor,
denoted by E, which must be an irreducible divisorial component of the boundary
D’ := X’ — U’. Denote by D5 the singular locus of D. Pick any point x’ € y~'(D —
D*"8) N E. Note that x := p(x") belongs to the divisorial part D(V). Let us take an
admissible coordinate chart (V;xy,...,x,) centered at x with (x; = 0) =V N D so
that the frame (d log x;, dxa, . . ., dx,) for Q% (log DY) is adapted to log order with
respect to the metric @™!. Let o’ := y*w, be the canonical Kihler Einstein metric on
U’

Lemma A.14 below shows that «’ is adapted to log-order for Tx~(—log E°), where
X" = (X — D*™8), and E° := X’° N E. We are going to derive a contradiction
with the fact the E is contracted. Denote by A; a component of A so that f(E) C A;.
We can take admissible coordinates (‘W;zy,...,z,) and (U;wy,...,w,) centered at
some well-chosen x’ € EN X’* and y := f(x") € A; respectively so that f(W) c U,
and f|g : E — f(E) is smooth at x’. Moreover, within these coordinates, E N ‘W =
D'NW ={z; =0},and Ay NU = ANU = {w; = 0}. Denote by (fi(z),..., fn(z))
the expression of f within these coordinates. Then if the admissible coordinates are
chosen properly, one has

(i@, ... fa(2) = (7"91(2), - ... 2 Gk (2), Gsrs - - Gn)

where ¢1(2),...,gx(z) are holomorphic functions defined on W so that g;(z) # 0
and m; > 1fori = 1,...,k. Since E is exceptional, one has k > 2. By the norm
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estimate in [Mok12, eq. (8) on p. 338], the Kéhler-Einstein metric w for Ty (—log A) |y
is adapted to log order. More precisely, one has

|dwal? . ~ (=log |wi]*).
Since
frdlogwy; = mydlogz; + dlog go(w),
one thus has the following norm estimate

1.
|d10gzllf),fl > ﬁﬂ |d10gW2|Zfl -
2

—,u*|@ 2 o C(=log|z1|*)
md" gy 0T T |zt

for some constants C > 0. Since dlogz; is a local nowhere vanishing section for
Q5. (log '), we conclude that the metric w'~" for Q},,(~logD") is not adapted to
log order, and so is w’ for Tx~(—log D”°).

The contradiction is obtained, which ends the proof of the lemma. i

Lemma A.14. With the notations of the proof of Lemma A.13, the metric «’ is adapted
to log-order for Tx.(—log E°).

Proof. Write W := u~ (V). Since plw_p : W — D’ — V — D is a finite unramified
cover, the image of (p|w_p/). (71 (‘W — D’)) is a subgroup of ; (‘W — D) =~ Z index
m. Set
v:A" = A"
(Zl,. . 'azn) = (Z;n3223'~~3zn)

One thus has the following commutative diagram

A* x AT Py qy

\LV|A*xA"*1 i/ﬂ'w

AY ——— VYV
so that h°

Respn-1 D AT X A"! — W N U’ is an isomorphism. By the Riemann re-
movable singularities theorem, h extends to a holomorphic map h : A" — W. One
can easily check that h is surjective with finite fibers. Hence h is moreover biholo-
morphic. (W;zy,...,z,; h) is therefore an admissible coordinate centered at x” with
(z1 = 0) = W N D’ so that yu is expressed as v within the admissible coordinates of
(W;zy,...,2zy) and (V;xyq,...,x,). . Since

pdlogx; = mdlogzy, pdx, = dz, . .., p'dx, = dz,,

the frame (d log z1, dz,, . . ., dz,) for Q},(log D’) |y is adapted to log order. This shows
that the metric «’ is adapted to log order for Tx~ (—log D). O

We have shown that there is a finite surjective morphism

g: Y = X,
which identifies with the étale and surjective map U” — U over X — D.

We can now conclude the case discussed in Corollary A.10, where (X, D) is as-
sumed to be a smooth log-pair. Since the irreducible components of Y’ — U’ are con-
nected, this implies right away that D must be smooth. Moreover, for each connected
component A; of A, there is a connected component D; of D so that g|a, : A; — D;
is a finite surjective morphism, which is also étale by the local description of y given
in the proof of Lemma A.14. Hence in this case, D; is a smooth quotient of an abelian
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variety by the free action of some finite group G;. This suffices to establish Corollary
A.10.

The proof of Theorem A.8 will be complete with the following lemma.

Lemma A.15. The variety X identifies with the quotient of Y’ by the natural action of
G = F/Iv.

This result comes right away from Lemma A.12, taking M = Y/, N = X,and G = G.
Remark that we have R(Y")¢ = R(U’)® = R(U) = R(X) since U = U/G'

To conclude, it suffices to remark that Proposition A.1 claims that the toroidal com-

pactification Y of U also identifies with the quotient Y,/G. Thus, there is an isomor-
phism Y = X compatible with the identity on U. Theorem A.8 is proved.
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