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Abstract. In 1988 Simpson extended the Donaldson-Uhlenbeck-Yau theorem to the
context of Higgs bundles, and as an application he proved a uniformization theo-
rem which characterizes complex projective manifolds and quasi-projective curves
whose universal coverings are complex unit balls. In this paper we give a necessary
and su�cient condition for quasi-projective manifolds to be uniformized by com-
plex unit balls. This generalizes the uniformization theorem by Simpson. Several
byproducts are also obtained in this paper.
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0. Introduction

0.1. Main result. The main goal of this paper is to characterize complex quasi-
projective manifolds whose universal coverings are complex unit balls.

TheoremA (=Theorem 4.8.(i)). Let- be an=-dimensional complex projectivemanifold
and let � be a smooth divisor on - (which might contain several disjoint components).
Let ! be an ample polarization on - . For the log Higgs bundle (Ω1

-
(log�) ⊕ O- , \ ) on

(-, �) with the Higgs �eld \ de�ned by

\ : Ω1
- (log�) ⊕ O- → (Ω1

- (log�) ⊕ O- ) ⊗ Ω1
- (log�)(0.1.1)

(0, 1) ↦→ (0, 0),
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if it is `!-polystable (see § 1.4 for the de�nition), then one has the following inequality(
222(Ω1

- (log�)) − =

= + 1
21(Ω1

- (log�))2
)
· 21(!)=−2 ≥ 0.(0.1.2)

When the equality holds, then - − � ' B=�Γ for some torsion free lattice Γ ⊂ %* (=, 1)
acting on B= . Moreover, - is the (unique) toroidal compacti�cation of B

=
�Γ, and each

connected component of � is the smooth quotient of an Abelian variety � by a �nite
group acting freely on �.

Let us stress here that the smoothness of � in Theorem A is indeed necessary if one
would like to characterize non-compact ball quotients: in Theorem 4.8.(ii) we prove
that the universal cover of - − � is not the complex unit ball B= if � is assumed to
be simple normal crossing but not smooth, leaving other conditions in Theorem A
unchanged. Thus, it might be more appropriate to say that in this paper we give a
characterization of smooth toroidal compacti�cation of non-compact ball quotients.

Note that when � is empty or when dim - = 1, Theorem A has already been
proved by Simpson [Sim88, Proposition 9.8]. As we will see later, we follow his strat-
egy closely to prove the above theorem. Let us also mention that the inequality (0.1.2)
is a direct consequence of Mochizuki’s deep work on the Bogomolov-Gieseker in-
equality for parabolic Higgs bundles [Moc06, Theorem 6.5]. Our main contribution
is the uniformization result when the equality in (0.1.2) is achieved. The proof builds
on Simpson’s ingenious ideas [Sim88] on characterizations of complete varieties uni-
formized by Hermitian symmetric spaces, as well as Mochizuki’s celebrated work on
Simpson correspondence for tame harmonic bundles [Moc06]. Since the Kobayashi-
Hitchin correspondence for general slope polystable parabolic Higgs bundles is still
unproven, we need some additional methods to prove the above uniformization result
(see § 0.3 for rough ideas).

We will show that the conditions in Theorem A is indeed necessary, by proving
the following slope stability (with respect to a more general polarization) result for
the natural log Higgs bundles associated to toroidal compacti�cation of non-compact
ball quotient by torsion free lattice.

Theorem B (=§ 5.4). Let Γ ⊂ %* (=, 1) be a torsion free lattice with only unipotent
parabolic elements. Let - be the (smooth) toroidal compacti�cation of the ball quotient
B=�Γ. Write� := - −B=�Γ for the boundary divisor, which is a disjoint union of Abelian
varieties. Let U ∈ � 1,1(-,R) be a big and nef cohomology (1, 1)-class on - containing
a positive closed (1, 1)-current ) ∈ U so that ) |-−� is a smooth Kähler form and has at
most Poincaré growth near� (for example, U = 21( - +�) or U contains a Kähler form
l). Then one has the following equality for Chern classes

222(Ω1
- (log�)) − =

= + 1
21(Ω1

- (log�))2 = 0.(0.1.3)

The log Higgs bundle (Ω1
-
(log�) ⊕ O- , \ ) de�ned in (0.1.1) is `U -polystable for the

above big and nef polarization U . In particular, it is slope polystable with respect to any
Kähler polarization and the polarization by the big and nef class 21( - + �).

As a consequence of Theorems A and B, following [Sim88, Corollary 9.5] in the
compact setting, we give a new proof for the following rigidity result of ball quotient
under the automorphism of complex number �eld C to its coe�cients of de�ning
equations.

Corollary C (=§ 6). Let Γ ⊂ %* (=, 1) be a torsion free lattice, and let - := B=�Γ be
the ball quotient, which carries a unique algebraic structure, denoted by -alg. For any
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automorphism f ∈ Aut(C), let -falg := -alg ×f Spec(C) be the conjugate variety of -alg
under the automorphism f , and denote by -f the analyti�cation of -falg. Then -

f is
also a ball quotient, namely there is another torsion free lattice Γf ⊂ %* (=, 1) so that
-f = B

=
�Γf .

When Γ is arithmetic, Corollary C has been proved by Kazhdan [Kaz83]. When
Γ is non-arithmetic, it was proved by Mok-Yeung [MY93, Theorem 1] and by Baldi-
Ullmo [BU20, Theorem 8.4.2].

We also obtain some byproducts, and let us mention a few. We prove the Simpson-
Mochizuki correspondence for principal system of log Hodge bundles over projec-
tive log pairs (see Theorem 3.1). We give a characterization of slope stability with
respect to big and nef classes for log Higgs bundles on Kähler log pairs (see The-
orem 5.7). We also give a very simple proof of the negativity of kernels of Higgs
�elds of tame harmonic bundles by Brunebarbe [Bru17] (originally by Zuo [Zuo00] for
system of log Hodge bundles), using some extension theorems of plurisubharmonic
functions in complex analysis (see Theorem 4.6). In the appendix written jointly with
Benoît Cadorel, we prove a metric rigidity result for toroidal compacti�cation of non-
compact ball quotients (see Theorem A.8).

0.2. A few histories. Since the main purpose of this paper is to prove the uni-
formization result rather than the Miyaoka-Yau type inequality (0.1.2), we shall only
recall some earlier work related to the characterization of ball quotient, and we refer
the readers to [GKT16, GT16] for more references on the Miyaoka-Yau type inequal-
ities.

Based on his proof of the Calabi conjecture [Yau78], Yau established the inequality
(0.1.2) when- is a projective manifold and� = ∅with - ample. He proved that- is
uniformized by the complex unit ball in case of equality. Miyaoka-Yau inequality and
uniformization result were extended to the context of compact Kähler varieties with
quotient singularities by Cheng-Yau [CY86] using orbifold Kahler-Einstein metrics.
A partial uniformization result for smooth minimal models of general type have been
obtained by Zhang [Zha09]. More recently, uniformization result has been extended
to projective varieties with klt singularities in the series of work [GKPT19b,GKPT19a]
by Greb-Kebekus-Peternell-Taji.

All the above works dealt with compact varieties. A strong uniformization result
was established by Kobayashi [Kob84,Kob85] in the case of open orbifold surfaces (see
also [CY86]). In [CY86] Cheng-Yau also gave a di�erential geometric characterization
of quasi-projective ball quotients of any dimensions using the method of bounded
geometry in [CY80]. At almost the same time, based on [CY86], Tian-Yau [TY87] and
Tsuji [Tsu88] independently established similar algebraic geometric characterizations
of non-compact ball quotient of any dimension. To the best of author’s knowledge,
[TY87, Tsu88] are the only known works of algebraic geometric characterization of
high dimensional quasi-projective manifolds whose universal covers are unit balls.
See also [Yau93] for more details.

All these aforementioned uniformization results are built on the positivity of the
(log) canonical sheaf of the varieties together with existence of Kähler-Einstein met-
rics. In [Sim88], Simpson established a remarkable uniformization result in terms of
stability of Higgs bundles. We essentially follow his approaches in this paper. In next
subsection, we shall recall his ideas and discuss main di�culties in generalizing his
methods to the context of non-compact varieties.
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0.3. Main strategy. Let us brie�y recall Simpson’s strategy for the proof of Theo-
rem A when � = ∅. In [Sim88, Theorem 1], Simpson proved that Higgs bundles over
compact Kähler manifolds are polystable if and only if they admit Hermitian-Yang-
Mills metrics. He then introduced the important notion of principal system of Hodge
bundles, which is closed related to principal variation of Hodge structures. Based on
the Donaldson heat �owmethods in his proof of [Sim88, Theorem 1], in [Sim88, Propo-
sition 8.2] he proved that a principal system of Hodge bundles with vanishing second
Chern classes gives rise to a principal variation of Hodge structures, and vice versa.
Assume now the boundary divisor � of - in Theorem A is empty. In [Sim88, p. 901]
Simpson de�ned a principal system of Hodge bundles associated to (Ω1

-
⊕ O- , \ )

whose second Chern class vanishes by [Sim88, Proposition 9.8]. By [Sim88, Proposi-
tion 8.2], this gives rise to a principal variation of Hodge structures on the universal
covering of - , whose period map is biholomorphic to the complex unit ball of dim -

since - is compact. This is the rough idea of Simpson’s proof for Theorem A when
� = ∅.

Let us explain our rough ideas in the proof of Theorem A when the equality in
(0.1.2) holds.

Step 1: Following Simpson in the compact setting, we �rst de�ne systems of log
Hodge bundles over log pairs. We prove that, a system of log Hodge bun-
dles on a projective with vanishing �rst and second Chern classes admits a
Hodge metric, which is adapted to the trivial parabolic structure (see Proposi-
tion 1.16). The proof is di�erent from Simpson’s method since its is not clear
for us that Donaldson’s heat �ow can give the desired Hermitian-Yang-Mills
metric in the log setting. Instead, we �rst apply Mochizuki’s celebrated the-
orem [Moc06, Theorem 9.4] to show the existence of harmonic metric, and
we then use some�∗-action invariant property of log Hodge bundles to show
that this harmonic metric is moreover a Hodge metric.

Step 2: We generalize the result in Step 1 to the context of principal bundles. Fix a
Hodge group �0. Following Simpson again, we de�ne a principal system of
log Hodge bundles (%, g) on log pairs (-, �) with the structure group  ⊂ � ,
where � is the complexi�cation of �0. Based on the result in Step 1 to-
gether with some similar Tannakian arguments in [Sim90], in Theorem 3.1
we prove that if there is a faithful Hodge representation d : � → �!(+ )
for some polarized Hodge structure (+ = ⊕8+ 9=F+ 8, 9 , ℎ+ ) so that the system
of log Hodge bundles (% × + ,3d (g)) is `!-polystable with

∫
-
2ℎ2(% × + ) ·

21(!)dim-−2 = 0, then there is a metric reduction %� for % |-−� so that the
triple (% |-−� , g |-−� , %� ) gives rise to a principal variation of Hodge structures
on - − � .

Step 3: For the system of log Hodge bundles (� := Ω1
-
(log�) ⊕ O- , \ ) in Theorem A,

we �rst associate it a principal system of log Hodge bundles (%, g) in Propo-
sition 2.10, whose Hodge group�0 = %* (=, 1) is of Hermitian type (see De�-
nition 2.4). One can easily show that 22(% × g) = 22(End(�)⊥) = 0 when the
equality in (0.1.2) holds, where End(�)⊥ denotes the trace free part of End(�).
By a theorem of Mochizuki in Theorem 1.11, the system of log Hodge bundles
(% × g, 3 (�3) (g)) = (End(�)⊥, \�=3 (�)⊥) is also slope polystable if (�, \ ) is
slope polystable. Since the adjoint representation � → �!(g) is a faithful
Hodge representation, by the result in Step 2, there is a metric reduction %�
for % |-−� so that the triple (% |-−� , g |-−� , %� ) gives rise to a principal varia-
tion of Hodge structures on - − � . Since g : )- (− log�) → % × g−1,1 is an
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isomorphism, this implies that the period map ? : �- − � → %* (=, 1)�* (=)
associated to (% |-−� , g |-−� , %� ) from the universal cover �- − � of - − � to
the period domain �0� 0 = %* (=, 1)�* (=) is locally biholomorphic. For more
details, see Step one of the proof of Theorem 4.8

Step 4: We have to prove that the period map ? in Step 3 is moreover a biholomor-
phism. Note that when � = ∅, this step is quite easy. In Remark 2.6 we show
that it su�ces to prove that the hermitian metric g∗ℎ� on - − � is complete,
where ℎ� is the hermitian metric on % × g−1,1 |-−� induced by the metric re-
duction %� together with the Killing form of g. This step is slightly involved
and the readers can �nd it in Step two of the proof of Theorem 4.8. To be
brief, we establish a precise model metric (ansatz) for (�, \ ) ⊗ (�∗, \ ∗) locally
around � with at most log growth, and we prove that this local metric is in-
deed mutually bounded with ℎ� using similar ideas in [Sim90, §4]. Based on
this model metric, we obtain a precise norm estimates for ℎ� near � , so that
we can prove that g∗ℎ� is a complete metric on - − � . This concludes that
the universal cover of - − � is the unit ball %* (=, 1)�* (=).

0.4. Further perspectives. In this paper we only consider log Higgs bundles, namely
parabolic Higgs bundles with trivial parabolic structures. If one allows non-trivial
parabolic structures in Theorem A, we expect that there is a rami�ed covering of -
by the complex unit ball which is only rami�ed over � .

Theorem A gives a characterizations for ball quotients admitting a smooth toroidal
compacti�cation. It is certainly an interesting question to extend this characteriza-
tion for ball quotients whose toroidal compacti�cation is only an orbifold or even for
singular ball quotients. The �rst step towards this question is to extend Theorem 3.1
to the stacky setting as [Sim11].

In Theorem A, we consider the ample polarization for log Higgs bundles. In the last
decades, after the sequel work by Campana-Peternell [CP11], Greb-Kebekus-Peternell
[GKP16] and Campana-Păun [CP19], for applications in birational geometry it is quite
important to consider more general polarization by big and nef line bundles or even
movable curves. In Theorem B we establish such generalization for log Higgs bundles
associated to toroidal compacti�cations of ball quotients. In a future project we would
like to extend Theorem A to this context.

In [Sim88, Theorem 2], Simpson established a characterization of hermitian sym-
metric spaces of non-compact type. In Corollary 3.2 we only partially generalize his
result to the log setting. The missing point is the precise norm estimate of the Hodge
metric as Step 4 in § 0.3. We will consider this problem in a future work.

0.5. Acknowledgments. This work owes a lot to the deep work [Sim88, Sim90,
Sim92, Moc06], to which I express my deepest gratitude. I sincerely thank Professor
Carlos Simpson for answering my questions, as well as his suggestions and encour-
agements. I thank Professor Takuro Mochizuki for sending me his personal notes on
the proof of Theorem 1.11. I also thank Professors Jean-Pierre Demailly, Henri Gue-
nancia, Emmanuel Ullmo, Shing-Tung Yau, and Gregorio Baldi, Jiaming Chen, Chen
Jiang, Jie Liu, Mingchen Xia for very helpful discussions and their remarks on this
paper. My special thanks go to Benoît Cadorel for his very fruitful discussions on the
toroidal compacti�cation, which lead to a joint appendix with him in this paper. This
work is supported by “le fond Chern” à l’IHES.
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Notations and conventions

• A couple (�,ℎ) is a Hermitian vector bundle on a complex manifold - if � a holomor-
phic vector bundle on - equipped with a smooth hermitian metric ℎ. m̄� denotes the
complex structure of �, and we sometimes simply write m̄ if no confusion arises.

• Two hermitian metrics ℎ and ℎ̃ of a holomorphic vector bundle on - are mutually
bounded if �−1ℎ ≤ ℎ̃ ≤ �ℎ for some constant � > 0, and we shall denote by ℎ ∼ ℎ′.

• For a hermitian vector bundle (�,ℎ) on a complex manifold, 3ℎ = mℎ + m̄� denotes its
Chern connection and 'ℎ (�) = 32

ℎ
denotes its Chern curvature.

• For a Higgs bundle (�, \, ℎ) with a smooth metric ℎ on a complex manifold, �ℎ (�) :=
'ℎ (�) + [\, \ℎ], where \ℎ is the adjoint of \ with respect to ℎ. We denote by �ℎ (�)⊥
the trace free part of �ℎ (�).

• Let (�, \ ) be a log Higgs bundle on a log pair (-, �). For 0, 1 ∈ Z≥0, we denote by
) 0,1 (�, \ ) the tensor product of (�, \ ) with ) 0,1� := Hom(�⊗0, �⊗1), and ) 0,1\ the
induced Higgs �eld.

• Δ denotes the unit disk in C, and Δ∗ denotes the punctured unit disk.
• The complex manifold - in this paper is always assumed to be connected and of

dimension =.
• A log pair (-, �) consists of a (possibly non-compact) complex manifold- and simple

normal crossing divisor � on - . Such a log pair is called projective (resp. Kähler) if -
is a projective (resp. compact Kähler) manifold.

• % denotes the holomorphic principal  -�ber bundle on a complex manifold or log
pairs, and %� ⊂ % denotes its metric reduction with the structure group  0 ⊂  .

• For a cohomology big (1, 1)-class U on a compact Kähler manifold, E(U) denotes the
set of closed positive (1, 1)-currents in U with full Monge-Ampère mass.

• For a closed positive (1, 1)-current) on a complex manifold, locally it can be written
as ) =

√
−1mmi with i some plurisubharmonic function. Such i is called the local

potential of ) .
• Throughout the paper we always work over the complex number �eld C.

1. Log Higgs bundles and system of log Hodge bundles

1.1. Higgs bundles and tame harmonic bundles. In this section we recall the
de�nition of Higgs bundles and tame harmonic bundles. We refer the readers to
[Sim88, Sim90, Sim92, Moc02, Moc07] for further details.

De�nition 1.1. Let - be a complex manifold. A Higgs bundle on - is a pair (�, \ )
where � is a holomorphic vector bundle with m̄� its complex structure, and \ : � →
� ⊗ Ω1

-
is a holomorphic one form with value in End(�), say Higgs �eld, satisfying

\ ∧ \ = 0.

Let (�, \ ) be a Higgs bundle over a complex manifold - . Write �′′ := m̄� + \ . Then
�′′2 = 0. Suppose ℎ is a smooth hermitian metric of �. Denote by 3ℎ := mℎ + m̄� the
Chern connection with respect toℎ, and by \ℎ the adjoint of \ with respect toℎ. Write
�′
ℎ

:= mℎ + \ℎ . The metric ℎ is harmonic if the operator �ℎ := �′
ℎ
+ �′′ is integrable,

that is, if �2
ℎ
= 'ℎ + [\, \ℎ] = 0.

De�nition 1.2 (Harmonic bundle). A harmonic bundle on a complex manifold - is
triple (�, \, ℎ) where (�, \ ) is a Higgs bundle and ℎ is a harmonic metric for (�, \ ).

Let- be an=-dimensional complex manifold, and let� be a simple normal crossing
divisor.
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De�nition 1.3. (Admissible coordinate) Let ? be a point of- , and assume that {� 9 } 9=1,...,ℓ
be components of � containing ? . An admissible coordinate around ? is the tuple
(* ; I1, . . . , I=;i) (or simply (* ; I1, . . . , I=) if no confusion arises) where
• * is an open subset of - containing ? .
• there is a holomorphic isomorphism i : * → Δ= so that i (� 9 ) = (I 9 = 0) for

any 9 = 1, . . . , ℓ .
We shall write * ∗ := * − � , * (A ) := {I ∈ * | |I8 | < A, ∀8 = 1, . . . , =} and * ∗(A ) :=
* (A ) ∩* ∗.

Recall that the Poincaré metric l% on (Δ∗)ℓ × Δ=−ℓ is described as

l% =

ℓ∑
9=1

√
−13I 9 ∧ 3Ī 9
|I 9 |2(log |I 9 |2)2

+
=∑

:=ℓ+1

√
−13I: ∧ 3Ī:

Note that

l% = −
√
−1mm log

( ℓ∏
9=1
(− log |I 9 |2) · exp

( =∑
:=ℓ+1

|I: |2
) )
.

De�nition 1.4 (Poincaré growth). For a hermitian metric l on (Δ∗)ℓ × Δ=−ℓ , we say
it has at most (resp. the same) Poincaré growth if there is� > 0 so thatl ≤ �l% (resp.
l ∼ l% ). Let (-, �) be a log pair. A hermitian metricl on- −� has at most (resp. the
same) Poincaré growth near� if for any point G ∈ � , there is an admissible coordinate
(* ; I1, . . . , I=) centered at G and a constant �* > 0 so that l ≤ �*l% (resp. l ∼ l% )
for the Poincaré metric l% on* ∗.

Remark 1.5 (Global Kähler metric with Poincaré growth). Let (-,l) be a compact
Kähler manifold and � =

∑ℓ
8=1�8 is a simple normal crossing divisor on - . By

Cornalba-Gri�ths [CG75], one can construct a Kähler current ) over - , whose re-
striction on - − � is a complete Kähler form, which has the same Poincaré growth
near � as follows.

Let f8 be the section� 0(-,O- (�8)) de�ning �8 , and we pick any smooth metric ℎ8
for the line bundle O- (�8). One can prove that the closed (1, , 1)-current

) := l −
√
−1mm log(−

ℓ∏
8=1

log |Y · f8 |2·ℎ8 ),(1.1.1)

the desired Kähler current when 0 < Y � 1.

For any harmonic bundle (�, \, ℎ), let ? be any point of X, and (* ; I1, . . . , I=) be an
admissible coordinate around ? . On* , we have the description:

\ =

ℓ∑
9=1

5 93 log I 9 +
=∑

:=ℓ+1
6:3I:(1.1.2)

De�nition 1.6 (Tameness). Let t be a formal variable. We have the polynomials
det(5 9 − C), and det(6: − C), whose coe�cients are holomorphic functions de�ned
over * ∗. When the functions can be extended to the holomorphic functions over * ,
the harmonic bundle is called tame at ? . A harmonic bundle is tame if it is tame at
each point.
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1.2. Parabolic Higgs bundle. In this section, we recall the notions of parabolic
Higgs bundles. For more details refer to [Moc07]. Let - be a complex manifold,
� =

∑ℓ
8=1�8 be a reduced simple normal crossing divisor and * = - − � be the

complement of � .

De�nition 1.7. A parabolic sheaf (�, a�, \ ) on (-, �) is a torsion free O* -module �,
together with an R; -indexed �ltration a� (parabolic structure) by coherent subsheaves
such that
(1) a ∈ R; and a� |* = �.
(2) For 1 ≤ 8 ≤ ; , a+18� = a� ⊗ O- (�8), where 18 = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the

8-th component.
(3) a+&� = a� for any vector & = (n, . . . , n) with 0 < n � 1.
(4) The set of weights a such that a�/a−&� ≠ 0 is discrete in R; for any vector & =

(n, . . . , n) with 0 < n � 1.

A weight is normalized if it lies in [0, 1); . Denote 0� by ��, where 0 = (0, . . . , 0) .
Note that the parabolic structure of (�, a�, \ ) is uniquely determined by the �ltration
for weights lying in [0, 1); . A parabolic bundle on (-, �) consists of a vector bundle
� on - with a parabolic structure, such that as a �ltered bundle. When the parabolic
sheaf only has a single weight 0, we say that it has trivial parabolic structure.

De�nition 1.8. A parabolic Higgs bundle on (-, �) is a parabolic bundle (�, a�, \ )
together with O- linear map

\ : �� → Ω1
- (log�) ⊗ ��

such that
\ ∧ \ = 0

and
\ (a�) ⊆ Ω1

- (log�) ⊗ a�,

for a ∈ [0, 1); .

Throughout this paper, we mainly consider parabolic Higgs bundles with trivial
parabolic structures on log pairs (-, �). In this case, it is equivalent to consider log
Higgs bundles (�, \ ) over (-, �), namely, � is a holomorphic vector bundle on - , and
\ : � → � ⊗ Ω1

-
(log�) with \ ∧ \ = 0.

A natural class of parabolic Higgs bundles comes from prolongations of tame har-
monic bundle, which is discussed in the following section.

1.3. Prolongation by an increased order. By the work of Simpson [Sim90] and
Mochizuki [Moc02, Moc07], there is a natural parabolic Higgs bundle induced by a
tame harmonic bundle (�, \, ℎ). Let us recall their constructions.

We recall some notions in [Moc07, §2.2.1]. Let (-, �) be the pair in subsection 1.2.
Let � be a holomorphic vector bundle with a C∞ hermitian metric ℎ over - − � .

Let* be an open subset of- , which is admissible with respect to� . For any section
f ∈ Γ(* −�, � |*−�), let |f |ℎ denote the norm function of f with respect to the metric
ℎ. We denote |f |ℎ ∈ O(

∏ℓ
8=1 |I8 |−18 ) if there exists a positive number � such that

|f |ℎ ≤ � ·
∏ℓ
8=1 |I8 |−18 . For any b ∈ Rℓ , say −ord(f) ≤ b means the following:

|f |ℎ = O(
ℓ∏
8=1
|I8 |−18−Y)
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for any real number Y > 0. For any b , the sheaf b� is de�ned as follows:

Γ(* − �, b�) := {f ∈ Γ(* − �, � |*−�) | −ord(f) ≤ b}.(1.3.1)

The sheaf b� is called the prolongment of � by an increasing order b . In particular,we
use the notation �� in the case b = (0, . . . , 0).

According to Simpson [Sim90, Theorem 2] and Mochizuki [Moc07, Theorem 8.58],
the above prolongation gives a parabolic Higgs bundles, especially \ preserves the
�ltration.

Theorem1.9 (Simpson, Mochizuki). Let (-, �) be a complexmanifold- with a simple
normal crossing divisor � . If (�, \, ℎ) is a tame harmonic bundle on - − � , then the
corresponding �ltration b� according to the increasing order in the prolongment of �
de�nes a parabolic bundle (�, b�, \ ) on (-, �). �

In this case, we say the harmonic metric is adapted to the parabolic structure of
(�, b�, \ ).

1.4. Slope stability. Let (-,l) be a compact Kähler manifold of dimension = and
let � be a simple normal crossing divisor on - . Let (�, \ ) be a log Higgs bundle on
(-, �). Let U be a big and nef cohomology (1, 1)-class on - . For any torsion free
coherent sheaf � , its degree with respect to U is de�ned by degU (� ) := 21(� ) ·U=−1, and
its slope with respect to U is de�ned by

`U (� ) :=
degU (� )
rank �

.

Consider a log Higgs bundle (�, \ ) on (-, �). A Higgs sub-sheaf is a saturated co-
herent torsion free subsheaf �′ ⊂ � so that \ (�′) ⊂ �′ ⊗ Ω- (log�). We say (�, \ ) is
`U -stable if for Higgs sub-sheaf �′ of �, with 0 < rank�′ < rank�, the condition

`U (�′) < `U (�)

is satis�ed. (�, \ ) is `U -polystable if it is a direct sum of `U -stable log Higgs bundles
with the same slope.

When U = {l} where l is a Kähler form on - , we write `l instead of `U . When
U = 21(!) for some ample line bundle ! on - , we use the notation `! instead of `U .

By Simpson [Sim90], there is a C∗-action on log Higgs bundles (�, \ ) de�ned by
(�, C\ ) for any C ∈ C∗. It follows from the de�nition that, if (�, \ ) is `l-stable, then
(�, C\ ) is also `l-stable for any C ∈ C∗.

The following celebrated Simpson correspondence for tame harmonic bundles proved
by Mochizuki [Moc06] is a crucial ingredient in this paper.

Theorem 1.10 (Mochizuki). Let (-, �) be a projective log pair endowed with an ample
polarization !. A log Higgs bundle (�, \ ) on (-, �) is `!-polystable with

∫
-
21(�) ·

21(!)dim-−1 =
∫
-
2ℎ2(�) · 21(!)dim-−2 = 0 if and only if there is a harmonic metric

ℎ for (� |-−� , \ |-−�) which is adapted to the trivial parabolic structure. When (�, \ )
is moreover stable, such a harmonic metric ℎ is unique up to some positive constant
multiplication.

Let us mention that in [Biq97] Biquard has proved a stronger theorem when the
divisor � in Theorem 1.10 is smooth.

The poly-stability is also preserved under tensor product and dual by Mochizuki
[Moc19, Proposition 4.10].
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Theorem 1.11 (Mochizuki). Let (-, �) be a projective log pair endowed with an ample
polarization !. Let (�, \ ) be a `!-polystable log Higgs bundle on (-, �). Then the tensor
product ) 0,1 (�, \ ) is still a `!-polystable log Higgs bundle for 0, 1 ∈ Z≥0. Here ) 0,1� :=
Hom(�⊗0, �⊗1) with ) 0,1\ the induced Higgs �eld.

1.5. Simpson-Mochizuki correspondence for systems of log Hodge bundles.
A typical and important class of log Higgs bundle is the system of log Hodge bun-
dles. In this subsection, we shall apply Theorem 1.10 to prove the Simpson-Mochizuki
correspondence for systems of log Hodge bundles.
De�nition 1.12 (System of log Hodge bundles). Let (�, \ ) be a log Higgs bundle on
a log pair (-, �). We say that (�, \ ) is a system of log Hodge bundles if there is a
decomposition of � into holomorphic vector bundles � := ⊕?+@=F�?,@ such that

\ : �?,@ → �?−1,@+1 ⊗ Ω1
- (log�).

When � = ∅, such (�, \ ) is called a system of Hodge bundles. A system of log Hodge
bundles is `l-(poly)stable if it is `l-(poly)stable in the sense of log Higgs bundles.
De�nition 1.13 (Hodge metric). Let (� := ⊕?+@=F�?,@, \ ) be a system of Hodge bun-
dles on a complex manifold - . A hermitian metric ℎ for � is called a Hodge metric if
ℎ is harmonic, and it is a direct sum of metrics on the bundles �?,@ .

By Simpson [Sim88], a system of Hodge bundles equipped with a Hodge metric is
equivalent to a complex variation of Hodge structures. He then established his corre-
spondence for Hodge bundles over compact Kähler manifolds as follows.
Theorem 1.14 ([Sim88, Proposition 8.1]). Suppose (-,l) is a compact Kähler mani-
fold. A Hodge bundle (� := ⊕?+@=F�?,@, \ ) with 21(�) = 0 and 22(�) · [l]dim-−2 = 0 is
`l -polystable if and only if it admits a Hodge metric.

In the rest of this subsection, we will extend Theorem 1.14 to the log setting.
Let us �rst recall that, by Simpson [Sim90], a characterization of log Hodge bundles

is the �xed point of C∗-action. The automorphism of � obtained by multiplication by
C? on �?,@ gives an isomorphism between (�, \ ) and (�, C\ ). The converse holds as
follows.
Lemma 1.15 ( [Sim90, Lemma 4.1] & [Sim92, Theorem 8]). Let (�, \ ) be a log Higgs
bundle on a log pair (-, �). If (�, \ ) ' (�, C\ ) for some C ∈ C∗ which is not a root of
unity, then (�, \ ) has a structure of system of log Hodge bundles.

Let us state and prove the main result in this subsection.
Proposition 1.16. Let (-, �) be a projective log pair. Let (�, \ ) = (⊕?+@=F�?,@, \ )
be a system of log Hodge bundles on (-, �) which is `!-polystable with

∫
-
21(�) ·

21(!)dim-−1 =
∫
-
2ℎ2(�) · 21(!)dim-−2 = 0. Then there is a decomposition (�, \ ) =

⊕8∈� (�8, \8) where each (�8, \8) is `!-stable system of log Hodge bundles so that there is
a Hodge metric ℎ8 (unique up to a positive multiplication) for (�8 |-−� , \8 |-−�) which is
adapted to the trivial parabolic structure of (�8, \8).
Proof. Let us �rst prove the proposition when (�, \ ) is stable. By [Moc06, Theorem
9.1 & Propositions 5.1-5.3], there is a harmonic metrics ℎ for (� |-−� , \ |-−�) which is
adapted to the trivial parabolic structure, and such a harmonic metric is unique up
to a positive constant multiplication. We introduce automorphism 5C : � → � of �
parametrized by C ∈ * (1), de�ned by

5C (
∑
?+@=F

4?,@) =
∑
?+@=F

C?4?,@ .(1.5.1)
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for every 4?,@ ∈ �?,@ . Then 5C : (�, \ ) → (�, C\ ) is an isomorphism since C\ ◦ 5C = 5C ◦\ .
Hence by the uniqueness of harmonic metrics, there is a function _(C) : * (1) → R+

such that
5 ∗C ℎ = _(C) · ℎ.

For every 4?,@ ∈ �?,@ , one has
_(C)·ℎ(4?,@, 4?,@) = 5 ∗C ℎ(4?,@, 4?,@) = ℎ(5C (4?,@), 5C (4?,@)) = |C? |2ℎ(4?,@, 4?,@) = ℎ(4?,@, 4?,@)
Hence _(C) ≡ 1 for C ∈ * (1), namely 5 ∗C ℎ = ℎ. On the other hand,

ℎ(4?,@, 4A,B) = 5 ∗C ℎ(4?,@, 4A,B) = ℎ(5C (4?,@), 5C (4A,B)) = C?C−Aℎ(4?,@, 4A,B)
for any C ∈ * (1). Therefore, ℎ(4?,@, 4A,B) = 0 if ? ≠ A . Hence ℎ is a direct sum of
hermitian metrics for �?,@ , namely ℎ is a Hodge metric. The proposition is proved if
(�, \ ) is stable.

Let us prove the general cases. By [Moc06, Corollary 3.11 & Theorem 9.1 & Proposi-
tions 5.1-5.3], there is a canonical and unique decomposition (�, \ ) = ⊕8∈� (�8, \8) ⊗C?8
where � is a �nite set and harmonic metrics ℎ8 for (�8 |-−� , \8 |-−�) which is adapted
to the trivial parabolic structure so that (�8, \8) is a `!-stable log Higgs bundle. By the
above arguments, it su�ces to prove that each (�8, \8) is system of log Hodge bundles.
Since (�, \ ) is a system of log Hodge bundles, (�, C\ ) is isomorphic to (�, \ ) for any
C ∈ * (1). We have the following decomposition (�, C\ ) = ⊕8 (�8, C\8) ⊗ C?8 . Note that
(�8, C\8) is still `!-stable. By the uniqueness of the decomposition, (�8, C\8) ' (�8C , \8C )
for some 8C ∈ � . Since � is a �nite set, there exists C1, C2 so that C1/C2 is not a root of
unity and 8C1 = 8C2 . In other words, (�8, C1\8) ' (�8, C2\8). By Lemma 1.15, (�8, C1\8) is
a system of log Hodge bundles, and so is (�8, \8). Hence (�, \ ) is a direct sum of `!-
stable system of log Hodge bundles (�8, \8), and each (�8 |-−� , \8 |-−�) admits a Hodge
metric ℎ8 adapted to the trivial parabolic structure. The proposition is proved. �

2. Principal system of log Hodge bundles

In this section, we will extend Simpson’s principal system of log Hodge bundles in
[Sim88, §8] to the log setting. We will provide all necessary proofs for the claims
for completeness sake. Let us mention that most results in this section follows from
[Sim88, §8 & §9] with minor changes.

Let�0 be a real connected algebraic group which is semi-simple with its Lie algebra
denoted by g0. Let � be its complexi�cation with its Lie algebra denoted by g. Then
g = g0 +

√
−1g0. �0 is called a Hodge group if the following conditions hold.

• The Lie algebra g of � admits a Hodge structure of weight 0, namely, one has a
decomposition

g = ⊕g?,−?

so that [g?,−?, g@,−@] ⊂ g?+@,−?−@ .
• If • denotes the complex conjugation with respect to g0, then g?,−? = g−?,? .
• The form

ℎg (* ,+ ) := (−1)?+1)A (03*03+̄ ) for * ,+ ∈ g?,−?(2.0.1)
is a positively de�nite hermitian metric for g.

let  0 ⊂ �0 be the Lie subgroup of�0 so that its Lie algebra k0 is g0 ∩ g0,0. Let  ⊂ �
(resp. k) be the complexi�cation of  0 (resp. k0), and thus the Lie algebra of  is k.
Then the restriction of the Killing form of g0 on k0 is positively de�nite, and thus  0
is a compact real Lie group.

In the rest of the paper, we shall use the above notations without recalling their
meanings.
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The following concrete example of the Hodge group will be used in this paper,
especially in the proof of Theorem A.
Example 2.1. Consider the a direct sum of C-vector spaces

+ = ⊕8+ 9=F+ 8, 9

Denote by A8 := rank+ 8, 9 , and A := rank + . Fix a hermitian metric ℎ = ⊕8+ 9=Fℎ8 for
+ where ℎ8 is a hermitian metric for + 8, 9 . We take a sesquilinear form & (D, E) :=
(
√
−1)8− 9ℎ(D, E) for D, E ∈ + 8, 9 . De�ne �0 := %* (+ ,&) = %* (?0, @0), where ?0 :=∑
8 >33 A8 and @0 :=

∑
8 4E4= A8 . We shall show that �0 is a Hodge group.

First we note that the complexi�cation of �0 is � := %�!(+ ) ' %�!(A,C). Then
the Lie algebra of� is g = sl(+ ) ' sl(A,C), and the Lie algebra of�0 is g0 = su(?0, @0).
Let us de�ne the Hodge decomposition as follows:

g?,−? = ⊕8Hom(+ 8, 9 ,+ 8+?,9−?) ∩ sl(+ ).
Then g = ⊕g?,−? . One can check that g?,−? = g−?,? , where the conjugate is taken with
respect to the real form g0 of g.

Let  be the subgroup of� which �x each+ 8, 9 . Then  = % (∏8+ 9=F �!(+ 8, 9 )), and
its Lie algebra is k = g0,0. De�ne  0 :=  ∩ �0 = % (∏8+ 9=F * (+ 8, 9 , ℎ8)), whose Lie
algebra is k0 = g0,0 ∩ g0.

More precisely, if we �x a unitary frame 41, . . . , 4?0 for (⊕8>33+ 8, 9 , ⊕8 >33ℎ8) and a
unitary frame 51, . . . , 5@0 for (⊕8 4E4=+ 8, 9 , ⊕8>33ℎ8), elements in g0 can be expressed as
the ones in " (A × A,C) with the form [

� �

�∗ �

]
where� ∈ u(?0) and � ∈ u(@0) so that)A (�) +)A (�) = 0. Note that the Killing form

)A (03D03E ) = 2A)A (DE),
if we consider D, E as elements in sl(A,C). Moreover, for D ∈ g?,−? , one can show that

D =

{
−D∗ if ? is even
D∗ if ? is odd.

whereD∗ denotes the conjugate transpose ofD. Hence the hermitian metricℎg de�ned
in (2.0.1) can be simply expressed as

ℎg (D, E) = 2A)A (DE∗)
once we considerD, E as elements in sl(A,C). In other words, for the natural inclusion
] : g ↩→ gl(+ ), one has ℎg = 2A · ]∗ℎ�=3 (+ ) , where ℎ�=3 (+ ) is the hermitian metric on
End(+ ) induced byℎ+ . This fact is an important ingredient in the proof of Theorem A.

Let us generalize Simpson’s de�nition of principal system of Hodge bundles in
[Sim88, §8] to the log setting as follows.
De�nition 2.2 (Principal system of log Hodge bundles). A principal system of log
Hodge bundles on a log pair (-, �) is a pair (%, g), where % is a holomorphic  -�ber
bundle endowed with a holomorphic map

g : )- (− log�) → % × g−1,1

such that [g (D), g (E)] = 0. A metric for % |-−� is a reduction %� ⊂ % |-−� whose
structure group is  0. Let 3� be the Chern connection for %� . De�ne g� to be the
complex conjugate of g |-−� with respect to the reduction %� . Then

g� ∈ C∞(- − �, (%� × 0 g
1,−1) ⊗ Ω0,1

-−�).
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Set

�� := 3� + g |-−� + g� ,(2.0.2)

which is a connection on the smooth�0-bundle %�× 0�0. Such triple (% |-−� , g |-−� , %� )
is called a principal variation of Hodge structures over - −� of Hodge group�0, if the
induced connection �� in (2.0.2) is �at, namely the curvature of �� is zero.

Remark 2.3 (Period map of principal variation of Hodge structures). By Simpson
[Sim88, p. 900], for a principal variation of Hodge structures (%, g, %� ) on a com-
plex manifold - , one can also de�ne its period map as follows. Denote by c : -̃ → -

the universal cover of - . Set (%̃ := c∗%, g̃ := c∗g, %̃� := c∗%� ), which is a princi-
pal variation of Hodge structures on the simply connected complex manifold -̃ . The
�at connection �� thus induces a �at trivialization %̃� × 0 �0 ' -̃ ×�0. Denote by
q : %̃� → �0 the composition of the inclusion %̃� ⊂ %̃� × 0 �0 ' -̃ × �0 and the
projection -̃ ×�0 → �0. It induces a map

5 : -̃ → �0� 0 =: D(2.0.3)

G̃ ↦→ q (4G ) ·  0 ∀4G ∈ %̃�,G̃ .
Alternatively, we view �0 → D as a principal  0-�ber bundle over D , and its pull-
back on -̃ via 5 is nothing but the principal  0-�ber bundle %̃� by our de�nition of
5 . Hence the complexi�ed di�erential of 5 is

3 5 C : )C
-̃
→ 5 ∗)CD ' 5

∗(�0 × 0 ⊕?≠0g
?,−?) = %̃� × 0 ⊕?≠0g

?,−?

One can prove that 3 5 C = g̃ + g̃� , where g̃� is the conjugate of g̃ with respect to
%̃� . Hence the restriction of 3 5 C to the holomorphic tangent bundle )-̃ is g̃ , which
is a holomorphic map since the holomorphic tangent bundle of D is )D ' �0 × 0

⊕?<0g
?,−? . In conclusion, 5 is a holomorphic map, which is called the period map

associated to the principal variation of Hodge structures (%, g, %� ), whose di�erential
is given by 3 5 = g̃ .

The uniformization is related by Hodge group of Hermitian type.

De�nition 2.4 ([Sim88, §9]). A Hodge group�0 is called Hermitian type if the Hodge
decomposition g of the Lie algebra of � is

g = g−1,1 ⊕ g0,0 ⊕ g1,−1

and that �0 has no compact factor. In this case,  0 ⊂ �0 is the maximal compact
subgroup and D := �0� 0 is a Hermitian symmetric space of the non-compact type.

We also have to generalize the de�nition of uniformizing bundle by Simpson [Sim88,
§9] to the log setting.

De�nition 2.5 (Uniformizing bundle). Let �0 be a Hodge group of Hermitian type.
A uniformizing bundle on a log pair (-, �) is a principal system of log Hodge bundles
(%, g) such that g : )- (− log�) '→ % × g−1,1 is an isomorphism. A uniformizing vari-
ation of Hodge structures is a uniformizing bundle on a complex manifold - together
with a �at metric %� ⊂ % .

Remark 2.6 (Uniformization via uniformizing bundles). It follows from De�nition 2.5
that, for a uniformizing variation of Hodge structures over a complex manifold - ,
the period map 5 : -̃ → D de�ned in (2.0.3) is locally biholomorphic. Note that
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the metric reduction %� induces a hermitian metric ℎ� on % × g−1,1 ' %� × 0 g
−1,1

de�ned by

ℎ�
(
(?,D), (?, E)

)
:= )A (03D ◦ 03Ē )(2.0.4)

for any ? ∈ %� and D, E ∈ g−1,1. Note that for any : ∈  0, one has

ℎ�
(
(?:,�3:−1D), (?:,�3:−1E)

)
= )A (03�3:−1D ◦ 03�3:−1E

)
= )A (03�3:−1D ◦ 03�3:−1 Ē )
= )A (�3:−1 ◦ 03D ◦�3: ◦�3:−1 ◦ 03Ē ◦�3:)
= ℎ�

(
(?,D), (?, E)

)
.

By the equivalence relation (?,D) ∼ (?:,�3:−1D), the metric ℎ� is thus well-de�ned.
For the period domain D which is a hermitian symmetric space, one can also de�ne
the hermitian metric ℎD for)D ' �0× 0 g

−1,1 in a similar way. Since %̃� = 5 ∗�0 when
we consider �0 → D as a principal  0-�ber bundle, one has

c∗g∗ℎ� = 5 ∗ℎD .(2.0.5)

In other words, 5 : (-̃ , ℎ-̃ := c∗g∗ℎ� ) → (D, ℎD ) is a local isometry. Hence for the
action of c1(- ) on -̃ , the metric ℎ-̃ is invariant under this c1(- )-action. If g∗ℎ� is a
complete metric, so is c∗g∗ℎ� . By [Cha06, Theorem IV.1.2], 5 : -̃ → D is a covering
map, which is moreover a biholomorphism since -̃ and D are both simply connected.
In other words, - is uniformized by the hermitian symmetric space D .

One can construct systems of log Hodge bundles from principal ones via Hodge
representations.

De�nition 2.7 ( [Sim88, p. 900]). Let (+ = ⊕?+@=F+ ?,@, ℎ+ ) be a polarized Hodge
structure. A Hodge representation of �0 is a complex representation d : � → �!(+ )
satisfying the following conditions.
• The action of g is compatible with Hodge type, and such that  0 preserves Hodge

type. In other words,
3d (gA,−A ) (+ ?,@) ⊂ + ?+A,@−A

and d ( 0) (+ ?,@) ⊂ + ?,@ .1
• The sesquilinear form & de�ned by

& (D, E) := (
√
−1)?−@ℎ+ (D, E) for D, E ∈ + ?,@(2.0.6)

is �0 invariant. Namely, one has d (�0) ⊂ * (+ ,&).

Example 2.8. For the Hodge group�0, (g = ⊕?g?,−?, ℎg) is a polarized Hodge struc-
ture of weight 0, where ℎg is the polarization de�ned in (2.0.1) via the Killing form.
One can easily check that the adjoint representation �3 : � → �!(g) is a Hodge
representation for this polarized Hodge structure. Since� is a semi-simple Lie group,
the di�erential 3 (�3) : g → gl(g) is injective. When the center of � is trivial, then
�3 is faithful.

A principal system of log Hodge bundles together with a Hodge representation
induces a system of log Hodge bundles as follows.

1As remarked by Simpson [Sim88], this is not automatic if  0 is not connected. However, in Exam-
ple 2.1,  0 is always connected, and thus such condition will be super�uous in that case.



CHARACTERIZATION OF NON-COMPACT BALL QUOTIENTS 15

Lemma 2.9. If d : � → �!(+ ) is a Hodge representation of the Hodge group �0 and
(%, g) is a principal system of log Hodge bundles on the log pair (-, �), then (� :=
% × + , \ := 3d (g)) is a system of log Hodge bundles. A polarization ℎ+ for + together
with a metric %� for % |-−� give a metric ℎ� on the system of Hodge bundles (�, \ ) |-−�
over - − � . When (% |-−� , g |-−� , %� ) is a principal variation of Hodge structures over
- − � , (� |-−� , \ |-−� , ℎ�) gives rise to a complex variation of Hodge structures.

Proof. By De�nition 2.7, one has d ( ) (+ ?,@) ⊂ + ?,@ . Hence � := % × + admits a
decomposition of holomorphic vector bundles � = ⊕?+@=F�?,@ with �?,@ := % × + ?,@ .
Let us de�ne \ := 3d (g). Since g : )- (− log�) → % × g−1,1 satis�es [g (D), g (E)] = 0,
and 3d (6−1,1) (+ ?,@) ⊂ + ?−1,@+1, one thus has \ : �?,@ → �?−1,@+1 ⊗ Ω1

-
(log�), with

\ ∧ \ = 0. Hence (�, \ ) is a system of log Hodge bundles.
Let us now prove that d | 0 :  0 → �!(+ ) has image on* (+ ,ℎ+ ). Since d ( ) (+ ?,@) ⊂

+ ?,@ , one thus has
d ( ) ⊂

∏
?+@=F

�!(+ ?,@).

Since the sesquilinear form & in (2.0.6) is �0 invariant, one thus has

d (�0) = * (+ ,&).
Hence

d ( 0) ⊂ d (�0 ∩  ) ⊂
∏
?+@=F

* (+ ?,@, ℎ?,@) ⊂ * (+ ,ℎ+ ).(2.0.7)

Note that � = % × + ' %� × 0 + . We de�ne the hermitian metric ℎ� for � by setting

ℎ� ((?,D), (?, E)) := ℎ+ (D, E)
for any ? ∈ %� and for any D, E ∈ + . Since d ( 0) ⊂ * (+ ,ℎ+ ), one can check as
Remark 2.6 that ℎ is well-de�ned.

If (% |-−� , g |-−� , %� ) is a principal variation of Hodge structures on - − � , the
connection �� := 3� + g + g� is �at. By construction, the connection �ℎ� := 3ℎ� +
\ + \ℎ� for � |-−� is also �at, where 3ℎ� is the Chern connection for the metrized
vector bundle (�,ℎ�), and \ℎ� is the conjugate of \ with respect to ℎ� . Indeed, 3ℎ� is
naturally induced by 3� , and \ = 3d (g), \ℎ� = 3d (g� ). By [Sim88, p. 898], the triple
(� |-−� , \ |-−� , ℎ�) gives rise to a complex variation of Hodge structures on- −� . �

Conversely, one can associate a system of log Hodge bundles with a principal one
as follows. The following result shall be applied in the proof of Theorem A.

Proposition 2.10. Let (�, \ ) = (⊕?+@=F�?,@, \ ) be a system of log Hodge bundles on a
log pair (-, �). Then there is a principal system of log Hodge bundles (%, g) with the
structure group  associated to (�, \ ), where  is the semi-simple Lie group in Exam-
ple 2.1. Moreover, any hermitian metric ℎ := ⊕?+@=Fℎ? for � |-−� gives rise to a metric
reduction %� for % |-−� with the structure group  0 de�ned in Example 2.1.

Proof. We shall adopt the same notions as those in Example 2.1. Denote by A? :=
rank�?,@ , A :=

∑
?+@=F A? and set ℓ8 :=

∑
?≥8 A8 . We consider the following frame bun-

dle %̃ . The �ber of %̃ over a point G is the set of all ordered bases 41, . . . , 4A (or say
frames) for �G such that 4ℓ?−A?+1, . . . , 4ℓ? is a basis for �?,@G . The structure group of %̃
is thus

∏
? �!(A?,C), which is the subgroup of �!(A,C). %̃ can be equipped with the

holomorphic structure induced by �. Consider the homomorphism 5 : �!(A,C) →
%�!(A,C) =: � , and set  = %

( ∏
? �!(A?,C)

)
to be the image of

∏
? �!(A?,C) under
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5 . Set % to be the holomorphic  -�ber bundle obtained by extending the structure
group of

∏
? �!(A?,C) using 5 .

Note that % × g−1,1 = ⊕8+ 9=FHom(�8, 9 , �8−1, 9+1). Let us de�ne g := \ . The pair (%, g)
is a principal system of log Hodge bundles on the log pair (-, �).

Recall that the metricℎ for the Hodge bundle (�, \ ) |-−� is a direct sumℎ = ⊕?+@=Fℎ? .
We take a sesquilinear form & of � de�ned by & (D, E) := (

√
−1)?−@ℎ(D, E) for D, E ∈

�?,@ . We take %̃� to be a reduction of %̃ |-−� consisting of unitary frames with respect
to& . In other words, The �ber of %̃ over a point G is the set of frames 41, . . . , 4A for �G
such that 4ℓ?−A?+1, . . . , 4ℓ? is an orthonormal basis for (�?,@G , ℎ?). Hence the structure
group of %̃� is  ̃0 :=

∏
?+@=F * (A?). De�ne  0 := %

( ∏
?+@=F * (A?)

)
, which is the

image 5 ( ̃0). Set %� to be the smooth principal  0-�ber bundle on - − � obtained
by extending the structure group of %̃� using 5 :  →  0. Then %� ⊂ %-−� is also a
metric reduction. The Hodge group �0 will be %* (?0, @0) where ?0 :=

∑
? 4E4= A? and

@0 :=
∑
? >33 A? , and � := %�!(A,C) is the complexi�cation of �0. The proposition is

proved. �

3. Tannakian consideration

In this section, we shall state and prove the Simpson-Mochizuki correspondence for
principal systems of log Hodge bundles over projective log pairs. Its proof is based
on Proposition 1.16 together with some Tannakian considerations in [Sim90, Moc06,
Mau15].

Theorem 3.1. Let (-, �) be a projective log pair endowed with an ample polarization
!. Let (%, g) be a principal system of log Hodge bundles on (-, �), and let d be any
faithful Hodge representation d : � ↩→ �!(+ ) for some polarized Hodge structure (+ =

⊕8+ 9=F+ 8, 9 , ℎ+ ). If the system of log Hodge bundles (� := % × + , \ := 3d (g)) de�ned in
Lemma 2.9 is `!-polystable with

∫
-
2ℎ2(�) · 21(!)dim-−2 = 0, then there exists a metric

reduction %� for % |-−� so that the triple (% |-−� , g |-−� , %� ) is a principal variation of
Hodge structures on - − � . Moreover, such %� together with the polarization ℎ+ for +
gives rise to a Hodge metric ℎ for (�, \ ) |-−� (de�ned in Lemma 2.9) which is adapted to
the trivial parabolic structure of (�, \ ).
Proof. We �rst prove that (�, \ ) |-−� admits a Hodge metric ℎ over (�, \ ) |-−� which is
adapted to the trivial parabolic structure of (�, \ ). Since  is a complex semi-simple
Lie group, the Hodge representation d′ :  → �!(det+ ) induced by d has image
contained in (!(det+ ) = 1. Hence d′ is trivial. Note that det� = % × det+ , which
is thus a trivial line bundle on - . Hence 21(�) = 0. Since we assume that (�, \ ) is
`!-polystable with

∫
-
2ℎ2(�) · 21(!)dim-−2 = 0, it follows from Proposition 1.16 that

(�, \ ) |-−� admits a Hodge metric ℎ over (�, \ ) |-−� which is adapted to the trivial
parabolic structure of (�, \ ).

Let us now recall some Tannakian arguments. The representation d induces a rep-
resentation d0,1 : � → �!() 0,1+ ) for any 0, 1 ∈ N, where ) 0,1+ := Hom(+ ⊗0,+ ⊗1).
Since d is faithful, we can consider  as a reductive algebraic subgroup of �!(+ ).
There is a one dimensional complex subspace+1 ∈ ) 0,1+ for some (0, 1) ∈ N2 so that

 = {6 ∈ �!(+ ) | d0,1 (6) (+1) = +1}.(3.0.1)

Since  is reductive, there is a complementary subspace +2 of ) 0,1+ for +1 which is
invariant under  .

By Lemma 2.9, the Hodge representation d0,1 and (%, g) gives rise to a system of
log Hodge bundles (% × ) 0,1+ , \0,1 := 3d0,1 (g)) over (-, �), which is nothing but
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) 0,1 (�, \ ). Recall that d0,1 ( ) (+1) = +1 and d0,1 ( ) (+2) = +2. Consider the log Higgs
bundles (�1, \1) := (% × +1, 3d0,1 (g)) and (�2, \2) := (% × +1, 3d0,1 (g)) over (-, �).

Note that) 0,1 (�, \ ) = (�1, \1)⊕(�2, \2). By Theorem 1.10,) 0,1 (�, \ ) is `!-polystable
with

∫
-
21() 0,1 (�)) ·21(!)dim-−1 = 0 with respect to an arbitrary polarization !. Since

21() 0,1 (�)) = 21(�1) + 21(�2), by the polystability of ) 0,1 (�, \ ), we conclude that
(�1, \1) and (�2, \2) are both `!-polystable. By Proposition 1.16, each (�8 |-−� , \8 |-−�)
admits a harmonic metric ℎ8 which is adapted to the trivial parabolic structure of
(�8, \8). Moreover, ℎ coincides with ℎ1 ⊕ ℎ2 up to some obvious ambiguity.

In the rest of the proof, any object which appears is restricted over - − � . Let us
�rst enlarge the structure group of % by de�ning %�!(+ ) := %× �!(+ ) via the faithful
representation d | :  → �!(+ ). This is the holomorphic principal (frame) bundle
associated to �. We can consider % = % ×  ⊂ %�!(+ ) as a (metric) reduction of
%�!(+ ) . The metric ℎ for � gives rise to a reduction %* (�,ℎ) of %�!(+ ) with the structure
group* (+ ,ℎ+ ). Indeed, note that

� = %�!(+ ) ×�!(+ ) +

and thus the metricℎ for � induces a family of hermitian metricsℎ4 for+ parametrized
by 4 ∈ %�!(+ ) . It has the obvious relation ℎ4 ·6 = 6∗ℎ4 for any 6 ∈ �!(+ ). We de�ne

%* (�,ℎ) := {4 ∈ %�!(+ ) | ℎ4 = ℎ+ }(3.0.2)

and it is obvious that if 4 ∈ %* (�,ℎ) , then 4 · 6 ∈ %* (�,ℎ) if and only if 6 ∈ * (+ ,ℎ+ ).
Hence the structure group of %* (�,ℎ) is* (+ ,ℎ+ ).

Let us de�ne %� := % ∩ %* (�,ℎ) whose structure group is * (+ ,ℎ+ ) ∩  ⊃  0 by
(2.0.7). Since d is faithful, one has moreover * (+ ,ℎ+ ) ∩  =  0. Indeed, this easily
follows from that

 = {exp(
√
−1[): | : ∈  0, [ ∈ k0 ⊂ Lie(* (ℎ,ℎ+ ))}

and that √
−1k0 ∩ Lie(* (ℎ,ℎ+ )) = {0}.

Obviously, if we follow Lemma 2.9 to de�ne a new metric ℎ′ for � by setting

ℎ′((?,D), (?, E)) := ℎ+ (D, E)

for any ? ∈ %� and for any D, E ∈ + , then

ℎ′ = ℎ(3.0.3)

by (3.0.2). We shall prove that (% |-−� , g |-−� , %� ) is a principal variation of Hodge
structures on - − � following the elegant arguments in [Mau15, Proposition 3.7].

Let � ∈ C∞(%�!(+ ),) ∗%�! (+ ) ⊗ gl(+ )) be the Chern connection 1-form induced by
the Chern connection 3ℎ for (�,ℎ). Since ) 0,1 (�,ℎ) = (�1, ℎ1) ⊕ (�2, ℎ2), by (3.0.1),
when we take a base point ? ∈ % ⊂ %�!(+ ) , the holonomy �>; (?,W) with respect to
the connection� along any smooth loopW based at c (?) lies at ? · , where we denote
c : % → - . Hence the restriction of � to % is 1-form with values in k. In other words,
� is induced by a connection on % .

On the other hand, by the de�nition of the Chern connection, � is also induced by
a connection on %* (�,ℎ) . Since k0 = k∩Lie(* (+ ,ℎ+ )) where Lie(* (+ ,ℎ+ )) denotes the
Lie algebra of * (+ ,ℎ+ ), there is a connection �0 ∈ C∞(%� ,) ∗%� ⊗ k0) for the smooth
principal 0-�ber bundle %� := %* (�,ℎ)∩% which induces�. �0 is moreover the Chern
connection with respect to the reduction %� of % by the construction. Let us de�ne
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�� ∈ A 1,1(% × g) to be the curvature of the connection �0 + g + g� . Recall that one
has \ = 3d (g) and \ℎ = 3d (g� ). Hence

3d (�� ) = (3ℎ + \ + \ℎ)2 = �ℎ (�) = 0(3.0.4)

where 3ℎ is the Chern connection for (�,ℎ). Since d : � → �!(+ ) is faithful, 3d :
g → End(+ ) is thus injective. By (3.0.4) this implies that �� = 0. In conclusion,
(% |-−� , g |-−� , %� ) is a principal variation of Hodge structures on - − � . �

As a consequence of Theorem 3.1, we can give a partial characterization of hermit-
ian symmetric spaces, which partially extends Simpson’s characterization of hermit-
ian symmetric spaces [Sim88, Theorem 2] to the log setting.

Corollary 3.2. Let (-, �) be a projective log pair endowed with an ample polarization
!. Let (%, g) be a principal system of log Hodge bundles on (-, �) with � centerless.
Assume that the system of log Hodge bundle (% × g, 3 (�3) (g)) via the faithful Hodge
representation �3 : � ↩→ �!(g) in Example 2.8 is `!-polystable with 22(% × g) = 0.
Then there is a metric reduction %� for % |-−� so that the triple (% |-−� , g |-−� , %� ) is a
principal variation of Hodge structures on - − � . When (%, g) is further assumed to
be a uniformizing bundle, the period map 5 : �- − � → �0� 0 de�ned in (2.0.3) from
the universal cover �- − � of - − � to the hermitian symmetric space �0� 0 is locally
biholomorphic.

We further conjecture that the above period map is moreover an isomorphism
when (%, g) is the uniformizing bundle, namely, the universal cover of - − � is the
hermitian symmetric space �0� 0.

4. Uniformization of qasi-projective manifolds by unit balls

This section is devoted to the proof of Theorem A. In § 4.2 we shall prove a basic
result for the extension of plurisubharmonic functions. This lemma will be used in
the proof of Theorem A. We shall also give an application of this fact in Hodge the-
ory: we can give a much simpler proof of the negativity of kernel of Higgs �elds for
tame harmonic bundles originally proven by Brunebarbe [Bru17] (see also [Zuo00]
for systems of log Hodge bundles). With all the tools developed above, we are able to
prove Theorem A in § 4.3.

4.1. Adaptedness to log order and acceptable metrics. We recall some notions
in [Moc07, §2.2.2]. Let - be a C∞-manifold, and � be a C∞-vector bundle with a
hermitian metric ℎ. Let v = (E1, . . . , EA ) be a C∞-frame of E. We obtain the � (A )-
valued function � (ℎ, v),whose (8, 9)-component is given by ℎ(E8, E 9 ).

Let us consider the case - = Δ= , and � =
∑ℓ
8=1�8 with �8 = (I8 = 0). We have the

coordinate (I1, . . . , I=). Let ℎ, � and v be as above.
A frame v is called adapted up to log order, if the following inequalities hold over

- − �

�−1(−
ℓ∑
8=1

log |I8 |)−" ≤ � (ℎ, v) ≤ � (−
ℓ∑
8=1

log |I8 |)"

for some positive numbers " and � .

De�nition 4.1. Let (-, �) be a log pair, and let � be a holomorphic vector bundle
on - . A hermitian metric ℎ for � |-−� is adapted to log order if for any point G ∈ � ,
there is an admissible coordinate (* ; I1, . . . , I=), a holomorphic frame v for � |* which
is adapted up to log order.
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De�nition 4.2 (Acceptable metric). Let (-, �) be a log pair and let (�,\ ) be a log
Higgs bundle over (-, �). We say that the metric ℎ for � |-−� is acceptable at ? ∈ � ,
if the following holds: there is an admissible coordinate (* ; I1, . . . , I=) around ? , so
that the norm |�ℎ |ℎ,l% ≤ � for some � > 0 over * − � . When (�, \, ℎ) is acceptable
at any point ? of � , it is called acceptable. Such triple (�, \, ℎ) is called an acceptable
bundle on (-, �).

One can easily check that acceptable metrics and adaptedness to log order de�ned
above are invariant under bimeromorphic transformations.

Lemma 4.3. Let (-, �) be a log pair, and let ` : -̃ → - be a bimeromorphic morphism
so that `−1(�) = �̃ . For a log Higgs bundle (�, \ ) over (-, �), one can de�ne a log Higgs
bundle (�̃, \̃ ) on (-̃ , �̃) by setting �̃ = `∗� and \̃ to be the composition

`∗�
`∗\
−−→ `∗(� ⊗ Ω1

- (log�)) → `∗� ⊗ Ω1
-̃
(log �̃) .

If the metric ℎ for (�, \ ) |-−� is acceptable or adapt to log order, so is the metric `∗ℎ for
(�̃, \̃ ) |-̃−�̃ .

Proof. Since this is a local statement, we work on the local models. Pick a point G̃ ∈ �̃
with an admissible coordinate (* ; I1, . . . , I=) with �̃ = (I1 · · · Iℓ = 0) locally and take
an admissible coordinate (+ ;~1, . . . , ~=) for ` (G̃) with � = (~1 · · ·~< = 0) such that
` (* ) b + . Then for 8 = 1, . . . ,<, `∗~8 =

∏ℓ
9=1 I

08 9
9

with 08 9 ∈ Z≥0 and
∑ℓ
9=1 08 9 > 0.

One has

`∗ log(−|~8 |2) =
ℓ∑
9=1

208 9 log(−|I 9 |2).

Therefore, if ℎ is adapted to log order, so is `∗ℎ.
Let l1 and l2 be Poincaré metrics on* and + . One can easily show that

�l1 ≥ `∗l2(4.1.1)
for some constant � > 0. Note that

`∗�ℎ (�) = �ℎ̃ (�̃)
Hence

|�
ℎ̃
(�̃) |2

ℎ̃,l1
= |`∗�ℎ (�) |2`∗ℎ,l1

≤ 1
�
|`∗�ℎ (�) |2`∗ℎ,`∗l2

= `∗
1
�
|�ℎ (�) |2ℎ,l2

In conlusion, if the metric ℎ for (�, \ ) |-−� is acceptable, so is the metric `∗ℎ for
(�̃, \̃ ) |-̃−�̃ . �

4.2. Extension of psh functions and negativity of kernel of Higgs �elds. In
this subsection we shall prove a result on the extension of plurisubharmonic (psh for
short) functions, which will be used in the proof of Theorem A and Proposition 5.6. As
a byproduct, we give a very simple proof of the negativity of kernels of Higgs �elds
of tame harmonic bundles by Brunebarbe [Bru17, Theorem 1.3], which generalizes
the earlier work by Zuo [Zuo00] for system of log Hodge bundles.

Lemma 4.4. Let - = Δ= , and � =
∑ℓ
8=1�8 with �8 = (I8 = 0). Let i be a psh function

on - ∗. We assume that for any X > 0, there is a positive constant �X so that

i (I) ≤ X
ℓ∑
9=1
(− log |I 9 |2)) +�X

on - ∗. Then i extends uniquely to a psh function on - .
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Proof. De�ne iY := i + Y∑ℓ
9=1(log |I 9 |2) for any Y > 0. Then for each Y > 0, iY

is locally bounded from above, which thus extends to a psh ĩY on the whole - by
the well-known fact in pluripotential theory. By the maximum principle, for any
0 < A < 1, there is a point bY ∈ ( (0, A ) × · · · ( (0, A ) so that

sup
I∈Δ(0,A )×···×Δ(0,A )

iY (I) ≤ iY (bY) ≤ i (bY)

where ( (0, A ) := {I ∈ Δ | |I | = A }. Note that the compact set ( (0, A ) × · · · ( (0, A ) is
contained in - − � . Since i is psh on - − � , there exists I0 ∈ ( (0, A ) × · · · ( (0, A ) so
that

sup
I∈( (0,A )×···( (0,A )

i (I) ≤ i (I0) < +∞.

Hence iY is uniformly locally bounded from above.
We de�ne the upper envelope

ĩ := sup
Y>0

ĩY,

and de�ne the upper semicontinuous regularization of ĩ by

ĩ★(G) := lim
X→0+

sup
B(G,X)

ĩ (I).

where B(G, X) is the unit ball of radius X centered at G . Then by the well-known result
in pluripotential theory [Dem12b, Chapter 1, Theorme 5.7], ĩ★ is a psh function on
- . By our construction, ĩ★(I) = i (I) on - − � . This proves our result. �

A direct consequence of the above lemma is the following extension theorem of
positive currents.

Lemma 4.5. Let (-, �) be a log pair and let ! be a line bundle on - . Assume that ℎ is
a smooth hermitian metric for ! |-−� , which is adapted to log order. Assume further that
the curvature form

√
−1'ℎ (! |-−�) ≥ 0. Then ℎ extends to a singular hermitian metric

ℎ̃ for ! with zero Lelong numbers so that the curvature current
√
−1'

ℎ̃
(!) is closed and

positive. In particular, ! is a nef line bundle.

Let us show how to apply Lemma 4.4 to reprove the negativity of kernels of Higgs
�elds of tame harmonic bundles.

Theorem 4.6 (Brunebarbe). Let- be a compact Kähler manifold and let � be a simple
normal crossing divisor on - . Let (�, \, ℎ) be a tame harmonic bundle on - −� , and let
(��, \ ) be the prolongation de�ned in § 1.3. Let F be any coherent torsion free subsheaf of
�� which lies in the kernel of the Higgs �eld \ : �� → �� ⊗Ω1

-
(log�), namely \ (F ) = 0.

Then

(i) the singular hermitian metric ℎ |F for F , is semi-negatively curved in the sense
of [PT18, De�nition 2.4.1].

(ii) The dual F ∗ of F is weakly positive over - ◦ − � in the sense of Viehweg, where
- ◦ ⊂ - is the Zariski open set so that F |- ◦ → �� |- ◦ is a subbundle.

(iii) If the harmonic metric ℎ is adapted to log order and F is a subbundle of �� so that
\ (F ) = 0, then the line bundle OP(F ∗) (1) admits a singular hermitian metric 6
with zero Lelong numbers so that the curvature current

√
−1'6 (OP(F ∗) (1)) ≥ 0; in

particular, F ∗ is a nef vector bundle.

Proof. By [PT18, De�nition 2.4.1], it su�ces to prove that for any open set* and any
B ∈ F (* ), log |B |2

ℎ
extends to a psh function on * . Pick any point G ∈ � . By the de�-

nition of �� in (1.3.1), for any X > 0, there are an admissible coordinate (* ; I1, . . . , I=)
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centered at G , and a positive constant �X so that

log |B |2
ℎ
≤ X

ℓ∑
9=1
(− log |I 9 |2)) +�X

on* − � . Recall that 'ℎ (�) + [\, \ℎ] = �ℎ (�) = 0. We have

√
−1mm log |B |2

ℎ
= −
√
−1{'ℎ (�)B, B}
|B |2
ℎ

+
√
−1{mℎB, mℎB}
|B |2
ℎ

−
√
−1
{mℎB, B}
|B |2
ℎ

∧ {B, mℎB}
|B |2
ℎ

≥ −
√
−1{'ℎ (�)B, B}
|B |2
ℎ

= −
√
−1{\B, \B}
|B |2
ℎ

−
√
−1{\ℎB, \ℎB}
|B |2
ℎ

= −
√
−1{\ℎB, \ℎB}
|B |2
ℎ

≥ 0.

over- −� . Hence log |B |2
ℎ

is a psh function on- −� . By Lemma 4.4, we conclude that
log |B |2

ℎ
extends to a psh function on * . This proves that (F , ℎ) is negatively curved

in the sense of Păun-Takayama.
The metricℎ induces a negatively curved singular hermitian metricℎ1 (in the sense

of [PT18, De�nition 2.2.1]) on the subbundle F |- ◦ . By Lemma 4.5, ℎ1 induces a sin-
gular metric 6 for the line bundle OP(F ∗ |-◦ ) (1) so that

√
−1'6 (OP(F ∗ |-◦ ) (1)) ≥ 0. Note

that - − - ◦ is a codimension at least two subvariety. The second statement then
follows from Hörmander’s !2-techniques in [PT18, Proof of Theorem 2.5.2].

Let us prove the last statement. Since F is a subbundle of ��, one has- ◦ = - . Since
ℎ is assumed to be adapted to log order, the singular hermitian metric 6 for OP(F ∗) (1)
thus has zero Lelong numbers everywhere. This implies the nefness of the vector
bundle F ∗. �

Remark 4.7. In [Zuo00] Zuo proved the above statement when (�, \, ℎ) is moreover a
system of log Hodge bundles with unipotent monodromies around the boundary (see
also [FF17] for a re�ned result). Theorem 4.6 is proved by Brunebarbe in [Bru17].
Both their proofs made use of the monodromy �ltration to obtain a precise estimate
of the Hodge metric so that they can show that log |B |2

ℎ
is locally bounded from above

near � . Here we give a much more simpli�ed proof which uses the very de�nitions
of tame harmonic bundles and the prolongation of the tame harmonic bundles.

A special case of Theorem 4.6.(iii) comes from the complex variation of Hodge
structures. For the complex variation of Hodge structures de�ned over - − � with
unipotent monodromies around � , the Hodge metric for the associated system of
Hodge bundles is a harmonic metric which is adapted to log order by [CKS86] or
[Moc02, Lemma 4.15]. Hence Theorem 4.6.(iii) also generalizes [FF17, Corollary 1.6],
whose proof relies on the very delicate analysis by Kollár [Kol87].

4.3. Characterization of non-compact ball quotient. Let us state and prove our
�rst main theorem in this paper.

Theorem 4.8. Let - be an =-dimensional complex projective manifold and let � be a
simple normal crossing divisor on - . Let ! be an ample polarization on - . For the log
Hodge bundle (Ω1

-
(log�) ⊕ O- , \ ) on (-, �) with \ de�ned in (0.1.1), we assume that
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it is `!-polystable. Then one has the following inequality(
222(Ω1

- (log�)) − =

= + 1
21(Ω1

- (log�))2
)
· 21(!)=−2 ≥ 0.(4.3.1)

When the above equality holds,

(i) if � is smooth, then - − � ' B=�Γ for some torsion free lattice Γ ⊂ %* (=, 1)
acting on B= . Moreover, - is the (unique) toroidal compacti�cation of B

=
�Γ, and

each connected component of � is the smooth quotient of an Abelian variety � by
a �nite group acting freely on �.

(ii) If � is not smooth, then the universal cover �- − � of - − � is not biholomor-
phic to B= , though there exists a holomorphic map �- − � → B= which is locally
biholomorphic.

In both cases,  - + � is big, nef and ample over - − � .
Proof. Denote the log Hodge bundle (�, \ ) = (�1,0 ⊕ �0,1, \ ) by

�1,0 := Ω1
- (log�), �0,1 := O- .

By [Moc06, Theorem 6.5] we have the following Bogomolov-Gieseker inequality for
(�, \ ) (

222(Ω1
- (log- )) − =

= + 1
21(Ω1

- (log�))2
)
· 21(!)=−2 =(4.3.2) (

222(�) −
rank� − 1

rank�
21(�)2

)
· 21(!)=−2 ≥ 0

This shows the desired inequality (4.3.1).
The rest of the proof will be divided into three steps. In Step 1, we shall construct

a uniformizing variation of Hodge structures on - − � so that the corresponding
period map de�ned in (2.0.3) induces a holomorphic map (so-called period map in
Remark 2.6) from the universal cover of - −� to B= which is locally biholomorphic.
By (2.0.5), this period map is moreover an isometry if we equip - −� with hermitian
metric induced by the Hodge metric. This proves Theorem 4.8.(ii). In Step two we will
prove that, when � is smooth, the hermitian metric on - − � induced by the Hodge
metric is complete. Together with arguments in Remark 2.6, this proves that the above
period map is indeed a biholomorphism. In Step three we shall prove Theorem 4.8.(ii)
and the positivity of  - + � .
Step 1. By Proposition 2.10, there is a canonical principal system of log Hodge bundles
(%, g) on (-, �) with the structure group  = % (�!(+ 1,0) ×�!(+ 0,1)), and the Hodge
group �0 = %* (=, 1). Here (+ = + 1,0 ⊕ + 0,1, ℎ+ ) is a polarized Hodge structure
with rank+ 1,0 = = and rank+ 0,1 = 1. For the complexi�ed group � = %�!(+ ) of
�0, there is a faithful representation d : � → �!(+ ⊗ + ∗), which is moreover a
Hodge representation in the sense of De�nition 2.7 when we equip+ ⊗+ ∗ the induced
polarized Hodge structure from (+ = + 1,0 ⊕ + 0,1, ℎ+ ).

By Lemma 2.9, such Hodge representation d induces a system of log Hodge bundles
(%×d (+ ⊗+ ∗), 3d (g)) over (-, �). By our construction, this system of log Hodge bun-
dle is nothing but (End(�), \�=3 (�)). An easy computation shows that 21(End(�)) = 0,
and

2ℎ2(End(�)) = −2rank� · 22(�) + (rank� − 1)21(�)2

= =22
1 ( - + �) − 2(= + 1)22(Ω1

- (log�)) = 0
since the equality in (4.3.2) holds by our assumption. Since we assume that (�, \ )
is `!-polystable, by Theorem 1.11, (End(�), \�=3 (�)) is also `!-polystable. We now
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apply Proposition 1.16 to �nd a Hodge metric ℎ for the system of log Hodge bun-
dle (End(�) |-−� , \�=3 (�) |-−�) which is adapted to the trivial parabolic structure of
(End(�), \�=3 (�)). Using the Tannakian arguments in Theorem 3.1, we conclude that
ℎ induces a reduction %� for % |-−� with the structure group  0 = % (* (=) ×* (1)) '
* (=), which is compatible with ℎ such that (% |-−� , g |-−� , %� ) is a principal variation
of Hodge structures on - − � . Note that

)- (− log�) g−→ % × g−1,1 = Hom(�1,0, �0,1) ' Hom(Ω1
- (log�),O- )

is an isomorphism. Hence (% |-−� , g |-−� , %� ) is moreover a uniformizing variation of
Hodge structures over - −� in the sense of De�nition 2.5. By Remark 2.6, it gives rise
to a holomorphic map, the so-called period map,�- − � → �0� 0 =

%* (=, 1)�* (=) ' B
=(4.3.3)

de�ned in (2.0.3), which is locally biholomorphic. Here �- − � is the universal cover of
- − � .

Note that the reduction %� together with the hermitian metric ℎg in (2.0.1) gives
rise to a natural metric ℎ� over % × g−1,1 |-−� de�ned in (2.0.4). By Remark 2.6 again,
if the pull back g∗ℎ� is a complete metric on - − � , then - − � is uniformized by
�0� 0 =

%* (=, 1)�* (=) which is the complex unit ball of dimension =, denoted by B= .
The rest of the proof is devoted to show the completeness of g∗ℎ� .

From the following commutative diagram

� = %�!(+ )

�!(+ ) �!(gl(+ ))

d

�3

?

and the fact that sl(+ ) is invariant under �36 for any 6 ∈ �!(+ ), we conclude that
g = sl(+ ) is an invariant subspace under d (6) for any 6 ∈ � . Hence for the adjoint
representation

�
�3−−→ �!(g) = �!(sl(+ )),

one has
d (6) |g = �36 ∈ �!(g).

Therefore, we have the following commutative diagram

(4.3.4)
Hom(�1,0, �0,1) End(�)⊥ End(�)

% × g−1,1 % × g % ×d gl(+ )

9

where End(�)⊥ is the trace-free subbundle of End(�).
It follows from (3.0.3) that the Hodge metricℎ for (End(�) |-−� , \�=3 (�) |-−�) ' (%×d
(+ ⊗ + ∗), 3d (g)) can be rede�ned via the reduction %� together with the hermitian
metric ℎ�=3 (+ ) of End(+ ) induced by (+ ,ℎ+ ) as in (2.0.4). Recall that in Example 2.1,
for the natural inclusion ] : g ↩→ gl(+ ), one has ℎg = 2(= + 1) · ]∗ℎ�=3 (+ ) . By (4.3.4),
one has

2(= + 1) 9∗ℎ = ℎ� ,
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where we recall that ℎ� is the metric over % × g−1,1 |-−� induced by the reduction
%� together with the hermitian metric ℎg in (2.0.1). It now su�ces to show that g∗ℎ is
complete if we want to prove that - − � is uniformized by B= . In next step, we will
apply similar ideas by Simpson [Sim90, Corollary 4.2] to prove this. Note that until
now we made no assumption on the smoothness of � .

Step 2. Throughout Step 2, we will assume that � is smooth. Consider now the
log Higgs bundle (E, [) := (End(�), \�=3 (�)). We �rst mention that the above Hodge
metric ℎ for (E, [) |-−� is adapted to log order in the sense of De�nition 4.1. Indeed,
it follows from [Moc02, Corollary 4.9] that the eigenvalues of monodromies of the
�at connection � := mℎ + m̄ + [ + [ℎ around the divisor � are 1. By the “weak” norm
estimate in [Moc02, Lemma 4.15], we conclude that ℎ is adapted to log order2.

We �rst give an estimate for g∗ℎ. For any point G ∈ � , consider an admissible
coordinates (* ; I1, . . . , I=) centered at G as De�nition 1.3 so that � ∩* = (I1 = 0). To
distinguish the sections of Higgs bundles and log forms, we write 41 := 3 log I1 and
48 = 3I8 for 8 = 2, . . . , =. Denote by 40 = 1 the constant section of O- . Let us introduce
a new metric ℎ̃ on (�, \ ) |* ∗ as follows.

|41 |2
ℎ̃

:= (− log |I1 |2)
〈48, 4 9 〉ℎ̃ := 0 for 8 ≠ 9 ;
|48 |2

ℎ̃
:= 1 for 8 = 2, . . . , =;

|40 |2
ℎ̃

:= (− log |I1 |2)−1

Within this basis {41, . . . , 4=, 40}, \ can be expressed as

\ =


0 · · · 0 0
...

. . .
...

...

0 · · · 0 0
3 log I1 · · · 3I= 0


Denote by � := (ℎ8 9 )0≤8, 9≤= the metric matrix of ℎ̃ with respect to the above basis.
One has

\ℎ = �
−1
\ ∗� =


0 · · · 0 ℎ−1

11ℎ00
3Ī1
Ī1

...
. . .

...
...

0 · · · 0 ℎ−1
==ℎ003Ī=

0 · · · 0 0


(4.3.5)

2Indeed, a strong norm estimate has already been obtained by Cattani-Kaplan-Schmid in [CKS86].
Here we only need to know thatℎ is adapted to log order, which is a bit easier to obtain using Andreotti-
Vesentini type results by Simpson [Sim90] and Mochizuki [Moc02, Lemma 4.15].
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Hence for 2 ≤ 8 ≤ 9 ≤ =, one has

[\, \ℎ]11 = ℎ
−1
11ℎ00

3Ī1

Ī1
∧ 3I1

I1

[\, \ℎ]8 9 = ℎ−1
88 ℎ003Ī8 ∧ 3I 9

[\, \ℎ]81 = ℎ−1
88 ℎ003Ī8 ∧

3I1

I1

[\, \ℎ]18 = ℎ−1
11ℎ00

3Ī1

Ī1
∧ 3I8

[\, \ℎ]00 = ℎ
−1
11ℎ00

3I1

I1
∧ 3Ī1

Ī1
+

=∑
8=2

ℎ−1
88 ℎ003I8 ∧ 3Ī8 .

Write �
ℎ̃
(�) := �

ℎ̃
(�): 9 ⊗ 4∗9 ⊗ 4: . Then for 8, 9 = 2, . . . , =, one has

�
ℎ̃
(�)11 = �ℎ̃ (�)10 = �ℎ̃ (�)01 = �ℎ̃ (�)08 = �ℎ̃ (�)90 = 0

�
ℎ̃
(�)8 9 = (− log |I1 |2)−13Ī8 ∧ 3I 9

�
ℎ̃
(�)18 =

1
(− log |I1 |2)2Ī1

3Ī1 ∧ 3I8

�
ℎ̃
(�)81 =

1
(− log |I1 |2)I1

3Ī8 ∧ 3I1

�
ℎ̃
(�)00 =

=∑
8=2
(− log |I1 |2)−13I8 ∧ 3Ī8 .

In conclusion, there is a constant �1 > 0 so that one has

|�
ℎ̃
(�) |2

ℎ,l4
=

∑
0≤ 9,:≤=

|�
ℎ̃
(�): 9 ⊗ 4∗9 ⊗ 4: |2ℎ,l4 ≤

�1

(− log |I1 |2)3 |I1 |2
(4.3.6)

over* ∗( 12 ) (notation de�ned in De�nition 1.3), wherel4 =
√
−1

∑=
8=1 3I8∧3Ī8 denotes

the Euclidean metric on* ∗.
We abusively denote by ℎ̃ the induced metric on (E, [) |* ∗ := (End(�), \�=3 (�)) |* ∗ ,

which is adapted to log order on (* , � ∩ * ) in the sense of De�nition 4.1 by our
construction. Then

�
ℎ̃
(E) = �

ℎ̃
(�) ⊗ 1�∗ + 1� ⊗ �ℎ̃∗ (�

∗)
= �

ℎ̃
(�) ⊗ 1�∗ − 1� ⊗ �ℎ̃ (�)

†

where �
ℎ̃
(�)† is the transpose of �

ℎ̃
(�). Hence

�
ℎ̃
(E)(48 ⊗ 4∗9 ) =

∑
:,ℓ

(X 9ℓ�ℎ̃ (�)8: − X8:�ℎ̃ (�)ℓ 9 ) (4: ⊗ 4
∗
ℓ )

for 0 ≤ 8, 9, :, ℓ ≤ =. It then follows from (4.3.6) that

|�
ℎ̃
(E)|2

ℎ,l4
≤ �2

(− log |I1 |2)3 |I1 |2
(4.3.7)

over* ∗( 12 ) for some constant�2 > 0. Consider the identity map B for E, which can be
seen as a holomorphic section of End(E, E). We denote by (F ,Φ) := (End(E, E), [�=3 (E))



26 YA DENG

the induced Higgs bundle by (E, [). Note that for any section 4 of E, one has

0 = (m̄E + [) (B (4)) − B
(
(m̄E + [) (4)

)
=

(
(m̄F + Φ) (B)

)
(4)

= Φ(B) (4).

Hence

Φ(B) = 0.(4.3.8)

We equip F |* ∗ with the metric ℎF := ℎ̃ ⊗ ℎ∗, where ℎ is the harmonic metric con-
structed in Step one. Note that

�ℎF (F ) = �ℎ̃ (E) ⊗ 1E∗ + 1E ⊗ �ℎ∗ (E∗)
= �

ℎ̃
(E) ⊗ 1�∗

By (4.3.6), there is a constant �0 > 0 so that one has

|�ℎF (F )|ℎF,l4 ≤
�0

(− log |I1 |2)
3
2 |I1 |

(4.3.9)

over* ∗( 12 ). Then

√
−1mm log |B |2

ℎF
= −
√
−1{'ℎFB, B}
|B |2
ℎF

+
√
−1{mℎFB, mℎFB}
|B |2
ℎF

−
√
−1
{mℎFB, B}
|B |2
ℎF

∧
{B, mℎFB}
|B |2
ℎF

≥ −
√
−1{'ℎFB, B}
|B |2
ℎF

= −
√
−1{ΦB,ΦB}
|B |2
ℎF

−
√
−1{ΦℎFB,ΦℎFB}
|B |2
ℎF

+
√
−1{�ℎF (F )B, B}
|B |2
ℎF

= −
√
−1{ΦℎFB,ΦℎFB}
|B |2
ℎF

+
√
−1{�ℎF (F )B, B}
|B |2
ℎF

≥
√
−1{�ℎF (F )B, B}
|B |2
ℎF

.

Here the second inequality is due to Cauchy-Schwarz inequality, and the fourth one
follows from (4.3.8). For any b = (b2, . . . , b=) with 0 ≤ b2, . . . , b= ≤ 1

2 , we de�ne a
smooth function 5b over Δ∗ parametrized by b by

5b (I1) := log |B |2
ℎF
(I1, b2, . . . , b=).

Then the above inequality together with (4.3.9) implies that

Δ5b ≥ −|�ℎF (F )| ≥ −
�0

(− log |I1 |2)
3
2 |I1 |

=: i

where �0 is some uniform constant which does not depend on b . Note that

‖i ‖!2 :=
∫

0< |I1 |< 1
2

|i (I1) |23I13Ī1 < �4(4.3.10)
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for some constant �4 > 0. For any �xed 0 ≤ b2, . . . , b= ≤ 1
2 , consider the Dirichlet

problem {
q = 5b on {I1 | |I1 | = 1

2 }
Δq = i on {I1 | 0 < |I1 | < 1

2 }
(4.3.11)

By (4.3.10) and the elliptic estimate, one has

sup
0< |I1 |< 1

2

|q (I1) | ≤ �5(‖i ‖!2 + sup
|I1 |= 1

2

5b ).(4.3.12)

over {I1 | 0 < |I1 | < 1
2 } for some uniform constant �5 which does not depending on

b . Hence Δ(5b −q) ≥ 0 over {I1 | 0 < |I1 | < 1
2 }. Since both ℎ and ℎ̃ are adapted to log

order, so is ℎF . Hence there is a constant �6 > 0 so that

log |B |2
ℎF
≤ �6 log(−

ℓ∑
8=1

log |I8 |)

over* ∗( 12 ). By Lemma 4.4, we conclude that 5b−q extends to a subharmonic function
on {I1 | |I1 | < 1

2 }. Note that 5b (I1) − q (I1) = 0 when |I1 | = 1
2 . Hence by maximum

principle,
5b (I1) ≤ q (I1)

for any 0 < |I1 | < 1
2 . Let

�7 := sup
|I1 |= 1

2 ,0≤b2,...,b=≤ 1
2

5b (I1)

which is �nite. By (4.3.10) and (4.3.12), we have

sup
0< |I1 |< 1

2 ,0≤I2,...,I=≤ 1
2

log |B |2
ℎF
(I1, . . . , I=) ≤ �5(�4 +�7).

This implies that ℎ ≥ �8 · ℎ̃ over* ∗( 12 ) for some constant �8 > 0. By (4.3.7), one has

|�
ℎ̃∗ (E

∗) |2
ℎ∗,l4
≤ �0

(− log |I1 |2)3 |I1 |2
.

Hence if we use the metric ℎ ⊗ ℎ̃∗ for F and do the same proof, we can prove that
ℎ ≤ �9 · ℎ̃ over * ∗( 12 ) for some constant �9 > 0. Therefore, ℎ̃ and ℎ are mutually
bounded on* ∗( 12 ). By

g (I1
m

mI1
) = 4∗1 ⊗ 40(4.3.13)

g ( m
mI 9
) = 4∗9 ⊗ 40 for 9 = 2, . . . , =,(4.3.14)

we obtain the norm estimate for the metric

g∗ℎ ∼ g∗ℎ̃ =

√
−13I1 ∧ 3Ī1

|I1 |2(log |I1 |2)2
+

=∑
:=2

√
−13I: ∧ 3Ī:
− log |I1 |2

(4.3.15)

Though g∗ℎ is strictly less than the Poincaré metric near� , one can easily prove that it
is still a complete metric. Therefore, the hermitian metric g∗ℎ� = 2(= + 1) ·g∗ℎ on-−�
is also complete. Based on Remark 2.6, we conclude that - −� is uniformized by the
complex unit ball of dimension =, namely, there is a torsion free lattice Γ ⊂ %* (=, 1)
so that - − � ' B=�Γ. Since ℎ is adapted to log order, by (4.3.13) and (4.3.14), the
canonical Kähler-Einstein metric l := g∗ℎ for )- (− log�) |* is also adapted to log
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order. It follows from Theorem A.8 that - is the unique toroidal compacti�cation for
the non-compact ball quotient B

=
�Γ. We accomplish the proof of Theorem 4.8.(i).

Step 3. Assume now � is not smooth. By (4.3.3), the period map �- − � → B=

is locally biholomorphic. Assume by contradiction that it is an isomorphism. As
discussed above, the canonical Kähler-Einstein metric l := g∗ℎ for )- (− log�) |* is
adapted to log order. It follows from Theorem A.8 that � cannot be singular. The
contradiction is obtained, and thus the period map is not a uniformizing mapping.
We proved Theorem 4.8.(ii).

Let us show that  - + � is big, nef and ample over - − � . Note that the metric
detl−1 for ( - + �) |* is adapted to log order, and that

'detl−1 (( - + �) |* ) = (= + 1)l.

By Lemma 4.5, the hermitian metric detl−1 extends to a singular hermitian metric
ℎ -+� for -+� with zero Lelong numbers. Hence -+� is nef. Since

√
−1'ℎ - +� ( -+

�) > 0 on - −� ,  - +� is thus big and ample over - −� . We �nish the proof of the
theorem. �

Remark 4.9. Note that the asymptotic behavior of the metric (4.3.15) is exactly the
same as that of the Kähler-Einstein metric for the ball quotient near the boundary of
its toroidal compacti�cation (see [Mok12, eq. (8) on p. 338]). This is indeed the hint
for our construction of ℎ̃.

Remark 4.10. We expect that Theorem 4.8.(ii) cannot happen. This is the case when
dim- = 2. Indeed, when the Miyaoka-Yau type equality in (0.1.2) holds, together
with the conclusion that  - + � is big, nef and ample over - − � in Theorem 4.8, it
follows from [Kob85] that - − � is uniformized by B2, which is a contradiction to
Theorem 4.8.(ii).

5. Higgs bundles associated to non-compact ball qotients

In this section, we will prove Theorem B. §§ 5.1 and 5.2 are technical preliminaries.
In § 5.3 we prove that a log Higgs bundle (�, \ ) on a compact Kähler log pair is slope
polystable with respect to some polarization by big and nef cohomology (1, 1)-class, if
(�, \ ) admits a Hermitian-Yang-Mills metric with “mild singularity” near the bound-
ary divisor. In § 5.4 we use the Bergman metric for quotients of complex unit balls
by torsion free lattices to construct such Hermitian-Yang-Mills metric. This proves
Theorem B.

5.1. Notions of positivity for curvature tensors. We recall some notions of pos-
itivity for Higgs bundles in [DH19, §1.3].

Let (�, \ ) be a Higgs bundle endowed with a smooth metric ℎ. For any G ∈ - , let
41, . . . , 4A be a frame of � at G , and let 41, . . . , 4A be its dual in �∗. Let I1, . . . , I= be a
local coordinate centered at G . We write

�ℎ (�) = 'ℎ (�) + [\, \ℎ] = 'V
9:̄U
3I 9 ∧ 3Ī: ⊗ 4U ⊗ 4V

Set ' 9:̄U V̄ := ℎW V̄'
W

9:̄U
, where ℎW V̄ = ℎ(4W , 4V). �ℎ (�) is called Nakano semi-positive at G

if ∑
9,:,U,V

' 9:̄U V̄D
9UD:V ≥ 0
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for any D =
∑
9,U D

9U m
mI 9
⊗ 4U ∈ () 1,0

-
⊗ �)G . (�, \, ℎ) is called Nakano semipositive if

�ℎ (�) is Nakano semi-positive at every G ∈ - . When \ = 0, this reduces to the same
positivity concepts in [Dem12b, Chapter VII, §6] for vector bundles.

We write
�ℎ (�) ≥Nak _(l ⊗ 1�) for _ ∈ R

if ∑
9,:,U,V

(' 9:̄U V̄ − _l 9:̄ℎUV̄) (G)D 9UD:V ≥ 0

for any G ∈ - and any D =
∑
9,U D

9U m
mI 9
⊗ 4U ∈ () 1,0

-
⊗ �)G .

Let us recall the following lemma in [DH19, Lemma 1.8].

Lemma 5.1. Let (�, \, ℎ) be a Higgs bundle on a Kähler manifold (-,l). If there is a
positive constant � so that |�ℎ (G) |ℎ,l ≤ � for any G ∈ - , then

�l ⊗ 1� ≥Nak �ℎ ≥Nak −�l ⊗ 1�

The following easy fact in [DH19, Lemma 1.9] will be useful in this paper.

Lemma 5.2. Let (�1, \2, ℎ1) and (�2, \2, ℎ2) are two metrized Higgs bundles over a Käh-
ler manifold (-,l) such that |�ℎ1 (G) |ℎ1,l ≤ �1 and |�ℎ2 (G) |ℎ2,l ≤ �2 for all G ∈ - . Then
for the hermitian vector bundle (�1 ⊗ �2, ℎ1ℎ2), one has

|�ℎ1⊗ℎ2 (G) |ℎ1⊗ℎ2,l ≤
√

2A2�
2
1 + 2A1�

2
2

for all G ∈ - . Here A8 := rank�8 .

5.2. Some pluripotential theories. In this subsection we recall some results of
deep pluripotential theories in [BEGZ10, Gue14]. The results in this subsection will
be used in the proof of Proposition 5.6. Let us �rst recall the de�nitions of big or nef
cohomology (1, 1)-classes in [Dem12a, §6].

De�nition 5.3. Let (-,l) be a compact Kähler manifold. Let U ∈ � 1,1(-,R) be a
cohomology (1, 1)-class of - . The class U is nef (numerically eventual free) if for any
Y > 0, there is a smooth closed (1, 1)-form [Y ∈ U so that [Y ≥ −Yl . The class U is big
if there is a closed positive (1, 1)-current ) ∈ U so that ) ≥ Xl for some X > 0. Such
a current ) will be called a Kähler current.

Let - be a complex manifold of dimension = and let * ⊂ - be a Zariski open set
of - . Pick a smooth hermitian form l on - . For any smooth di�erential form [ of
degree ? on* so that ∫

*

|[ |l ∧ l= < +∞,

one can trivially extend [ to a current )[ on - of degree = − ? by setting

〈)[, D〉 :=
∫
*

[ ∧ D(5.2.1)

where D is the any test form of degree ? which has compact support. In general, )[
might not be closed even if [ is closed.

Let (-,l) be a compact Kähler manifold of dimension =. Let U1, . . . , U= be big co-
homology classes. Let )8 ∈ U8 be positive closed (1, 1)-currents whose local potential
is locally bounded outside a closed analytic subvariety of- (a particular case of small
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unbounded locus of [BEGZ10, De�nition 1.2]). In this celebrated work by Boucksom-
Eyssidieux-Guedj-Zariahi [BEGZ10], they de�ned non-pluripolar product for these
currents

〈)1 ∧ · · · ∧)?〉

which is a closed positive (?, ?)-current, and does not charge on any closed proper
analytic subsets. Therefore, if we assume further that )8 is smooth over - −� where
� is a closed analytic subvariety of - , then 〈)1 ∧ · · · ∧ )?〉 is nothing but the trivial
extension of the (?, ?)-form ()1 ∧ · · · ∧)?) |-−� to - .

Following [BEGZ10, De�nition 1.21], for a big class U , a positive (1, 1)-current) ∈
U has full Monge-Ampère mass if ∫

-

〈)=8 〉 = Vol(U).

The set of such positive currents in U with full Monge-Ampère mass is denoted by
E(U). We will not recall the de�nition of the volume of big classes by Boucksom
in [Bou02]. We just mention that when the class U is big and nef, one has

Vol(U) = U= .

The following lemma will be used in § 5.3.

Lemma 5.4. Let (-,l) be a compact Kähler manifold and let � be a simple normal
crossing divisor on - . Let ( be a closed positive (1, 1)-current on - so that ( |-−� is a
smooth (1, 1)-form over - − � which is strictly positive at one point and has at most
Poincaré growth near � . Then the cohomology class U := {(} is big and nef, and
( ∈ E(U).

Proof. Let ) be the Kähler current on - constructed in Remark 1.5. Since ) |-−� has
at most Poincaré growth near � , there exists a constant �1 > 0 so that

�1) − ( ≥ 0.

Pick any point G ∈ � . Then there exists some admissible coordinates (* ; I1, . . . , I=)
centered at G so that the local potential i of ( satis�es that

i ≥ −�1 log(−
ℓ∏
8=1

log |I1 |2) −�2

for some constant �2 > 0. Hence ( has zero Lelong numbers everywhere and thus U
is nef. Since ( is strictly positive at one point on - −� , it is big by [Bou02]. It follows
from [Gue14, Proposition 2.3] that ( ∈ E(U). The lemma is proved. �

Let us recall an important theorem in [BEGZ10].

Theorem 5.5 ([BEGZ10, Corollary 2.15]). Let (-,l) be a compact Kähler manifold of
dimension =. Let U1, . . . , U= be big and nef classes on - . For )8 ∈ E(U8) which are all
smooth outside a closed proper analytic subset �, one has∫

-−�
)1 ∧ · · · ∧)= =

∫
-

〈)1 ∧ · · · ∧)=〉 = U1 · · ·U= .
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5.3. Hermitian-Yang-Mills metric and stability. Let (-,l) be a compact Kähler
manifold and let � be a simple normal crossing divisor on - . As we mentioned in
§ 0.4, for applications of birational geometry, one usually considers more general
polarization by big and nef line bundles. In this subsection, we will prove that a
log Higgs bundle (�, \ ) on (-, �) is `U -polystable if (�, \ ) |-−� admits a Hermitian-
Yang-Mills metric whose growth at in�nity is “mild”, where U is certain big and nef
cohomology class. When dim - = 1 or � = ∅ and the polarization is Kähler, this has
been proved by Simpson [Sim88,Sim90]. As we have seen in Theorem 1.10, when- is
projective and both the �rst and second Chern classes of � vanish and the polarization
is an ample line bundle, this result has been proved by Mochizuki.

We start with the following technical result, which is strongly inspired by the deep
result of Guenancia [Gue16, Proposition 3.8].

Proposition 5.6. Let (-,l0) be a compact Kähler manifold and let � be a simple
normal crossing divisor on - . Let (�, \ ) be a log Higgs bundle on (-, �). Let U be a big
and nef cohomology (1, 1)-class containing a positive closed (1, 1)-current l ∈ U so that
l |-−� is a smooth Kähler form and has at most Poincaré growth near � . Assume that
there is a hermitian metric ℎ for (�, \ ) |-−� which is adapted to log order (in the sense of
De�nition 4.1) and is acceptable (in the sense of De�nition 4.2). Then for any saturated
Higgs subsheaf � ⊂ �, one has

21(�) · U=−1 =

∫
-−�−/

)A (
√
−1'ℎ� (�)) ∧ l=−1(5.3.1)

where / is the analytic subvariety of codimension at least two so that� |-−/ ⊂ � |-−/ is
a subbundle, and ℎ� is the metric on � induced by ℎ.

Proof. By Remark 1.5, one can construct a Kähler current

) := l0 −
√
−1mm log(−

ℓ∏
8=1

log |Y · f8 |2ℎ8 ),(5.3.2)

over- , whose restriction on- −� is a complete Kähler forml% , which has the same
Poincaré growth near � . Here f8 is the section � 0(-,O- (�8)) de�ning �8 , and ℎ8 is
some smooth metric for the line bundle O- (�8). Since we assume thatℎ is acceptable,
(after rescaling ) by multiplying a constant) one thus has

|�ℎ (�) |ℎ,l% ≤ 1.
By Lemma 5.1, one has

−1 ⊗ l% ≤#0: �ℎ (�) ≤#0: 1 ⊗ l%
over - − � .

We �rst consider the case that � is an invertible saturated subsheaf of � which is
invariant under \ . Then the metric ℎ of � induces a singular hermitian metric ℎ� for
� de�ned on the whole - , which is smooth on on - ◦ := - − � − / . The curvature
current

√
−1'ℎ� (�) is a closed (1, 1)-current on - −� , which is a smooth (1, 1)-form

on - ◦. De�ne by c : � |- ◦ → � |- ◦ the orthogonal projection with respect to ℎ and
c⊥ : � |- ◦ → �⊥ |- ◦ the projection to its orthogonal complement. By the Chern-Weil
formula (see for example [Sim88, Lemma 2.3]), over - ◦, we have

'ℎ� (�) = �ℎ� (�) = �ℎ (�) |� + Vℎ ∧ V − i ∧ iℎ(5.3.3)
where �ℎ (�) |� is the orthogonal projection of �ℎ (�) on Hom(�,�) |- ◦ = O- ◦ , and V ∈
A 1,0(- ◦,Hom(�,�⊥)) is the second fundamental form, andi ∈ A 1,0(- ◦,Hom(�⊥,�))
is equal to \ |�⊥ . Hence

√
−1'ℎ� (�) ≤

√
−1�ℎ (�) |� .
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For any local frame 4 of � |- ◦ , note that

|4 |2
ℎ
·
√
−1�ℎ (�) |� = 〈

√
−1�ℎ (�) (4), 4〉ℎ ≤ 〈1 ⊗ l%4, 4〉ℎ = |4 |2ℎ · l%

Hence
√
−1�ℎ (�) |� − l% is a semi-negative (1, 1)-form on - ◦, and thus over - ◦ one

has

−
√
−1'ℎ� (�) +) ≥ l% −

√
−1�ℎ (�) |� ≥ 0

Since we assume that (�,ℎ) is adapted to log order, (�−1 |-−/ , ℎ−1
�
|-−/ ) is thus adapted

to log order for the log pair (- −/, �−/ ). By Lemma 4.5 and (5.3.2), −
√
−1'ℎ� (�) +)

extends to a closed positive (1, 1)-current on- −/ . Since / is of codimension at least
two, a standard fact in pluripotential theory shows that −

√
−1'ℎ� (�) +) extends to

a positive closed (1, 1)-current on the whole - .
Denote by B ∈ � 0(-, � ⊗ �−1) the section de�ning the inclusion � → �. We �x a

smooth hermitian metric ℎ0 for� and we de�ne a function � := |B |2
ℎ·ℎ−1

0
= ℎ� · ℎ−1

0 on
- − � . Then

√
−1mm log� =

√
−1'ℎ0 (�) −

√
−1'ℎ� (�).(5.3.4)

Hence there is a constant �0 > 0 so that
√
−1mm log� +�0) ≥ ) .(5.3.5)

By Lemma 5.4, l ∈ E(U). Since
√
−1'ℎ0 (�) is a smooth (1, 1)-form on - , it follows

from Theorem 5.5 that ∫
- ◦

√
−1'ℎ0 (�) ∧ l=−1 = 21(�) · U=−1.

To prove (5.3.1), by (5.3.4) and the above equality it su�ces to prove that∫
- ◦

√
−1mm log� ∧ l=−1 = 0.(5.3.6)

We will pursue the ideas in [Gue16, Proposition 3.8] to prove this equality.
Let us take a log resolution ` : -̃ → - of the ideal sheaf I de�ned by B ∈ � 0(-, �⊗

�−1), with O-̃ (−�) = `∗I and �̃ := `−1(�) a simple normal crossing divisor. Let us
denote by (�̃, \̃ ) the induced log Higgs bundle on (-̃ , �̃) by pulling back (�, \ ) via `.
Then the metric ℎ̃ := `∗ℎ for (�̃, \̃ ) |-̃−�̃ is also adapted to log order and acceptable by
Lemma 4.3.

Note that Supp(O-/I ) = / . Write �̃ := `∗� . There is a nowhere vanishing
section

B̃ ∈ � 0(-̃ , �̃ ⊗ �̃−1 ⊗ O-̃ (−�))
so that `∗B = B̃ · f�, where f� is the canonical section in � 0(-̃ ,O-̃ (�)) which de�nes
the e�ective exceptional divisor �.

Fix a Kähler form l̃ on -̃ , as Remark 1.5 we construct another Kähler current

)̃ := l̃ −
√
−1mm log(−

<∏
8=1

log |Y · f̃8 |2
ℎ̃8
),(5.3.7)

over -̃ , whose restriction on -̃ − �̃ is a complete Kähler form, which has the same
Poincaré growth near �̃ . Here f̃8 is the section � 0(-,O- (�̃8)) de�ning �̃8 , and ℎ̃8 is
some smooth metric for the line bundle O-̃ (�̃8).
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Let us �x a smooth hermitian metric ℎ� for O-̃ (�). Write �̃ := |B̃ |2
ℎ̃·`∗ℎ−1

0 ·ℎ−1
�

. Since

ℎ̃ is adapted to log order and B̃ is nowhere vanishing, there is a constant�1,�2 > 0 so
that

log �̃ ≥ �1i% −�2,(5.3.8)
where we denote by

i% := − log(−
ℓ∏
8=1

log |Y · f̃8 |2
ℎ̃8
).

Since ℎ̃ := `∗ℎ for (�̃, \̃ ) |-̃−�̃ is acceptable, by same arguments as those for (5.3.5), one
can show that √

−1mm log �̃ +�3)̃ ≥ )̃
over -̃−�̃ for some constant�3 > 0. Note that the local potential of

√
−1mm log �̃+�3)̃

is bounded from below by (�1 + �3)i% according to (5.3.8). By [Gue14, Proposition
2.3], one has √

−1mm log �̃ +�3)̃ ∈ E({�3)̃ }) .
It follows from (4.1.1) that `∗l ≤ �4)̃ for some constant�4 > 0. By Lemma 5.4 again,
`∗l ∈ E(`∗U). Hence by Theorem 5.5 one has∫

`−1 (- ◦)
(
√
−1mm log �̃ +�3)̃ ) ∧ `∗l=−1 = {�3)̃ } · `∗U=−1.

Recall that )̃ ∈ E({)̃ }) by Lemma 5.4. Hence∫
`−1 (- ◦)

�3)̃ ∧ `∗l=−1 = {�3)̃ } · `∗U=−1.

One thus has ∫
`−1 (- ◦)

√
−1mm log �̃ ∧ `∗l=−1 = 0.(5.3.9)

Note that over -̃ − �̃ , one has
√
−1mm log �̃ + [�] −

√
−1'ℎ� (�) = `∗

√
−1mm log�

where [�] is the current of integration of �. Hence over `−1(- ◦) ' - ◦, one has
√
−1mm log �̃ −

√
−1'ℎ� (�) = `∗

√
−1mm log�.(5.3.10)

By Theorem 5.5 again,∫
`−1 (- ◦)

√
−1'ℎ� (�) ∧ `∗l=−1 = 21(�) · `∗U=−1 = 0,(5.3.11)

where the last equality follows from the fact that � is `-exceptional. (5.3.9), (5.3.10)
together with (5.3.11) shows the desired equality (5.3.6). We �nish the proof of (5.3.1)
when rank� = 1.

Assume that rank� = A . We replace (�, \, ℎ) by the wedge product (�̃, \̃ , ℎ̃) :=
ΛA (�, \, ℎ). By Lemma 5.2, the induced metric ℎ̃ is also acceptable and one can easily
check that it is also adapted to log order. Note that det� is also invariant under \̃ ,
and that

det� → ΛA�.

We then reduce the general cases to rank 1 cases. The proposition is thus proved. �

Let us state and prove the main result in this section.
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Theorem 5.7. Let- be a compact Kähler manifold and let � be a simple normal cross-
ing divisor on - . Let U be a big and nef cohomology (1, 1)-class containing a positive
closed (1, 1)-current l ∈ U so that l |-−� is a smooth Kähler form and has at most
Poincaré growth near � . Let (�, \ ) be a log Higgs bundle on (-, �). Assume that there
is a hermitian metric ℎ on (�, \ ) |-−� such that
• it is adapted to log order (in the sense of De�nition 4.1);
• it is acceptable (in the sense of De�nition 4.2);
• it is Hermitian-Yang-Mills:

Λl�ℎ (�)⊥ = 0.
Then (�, \ ) is `U -polystable.

Proof. We shall use the same notations as those in Proposition 5.6. Let� be any satu-
rated Higgs-subsheaf� ⊂ �, and denote by / the analytic subvariety of codimension
at least two so that � |-−/ ⊂ � |-−/ is a subbundle. By the Chern-Weil formula again,
over - ◦ := - − / − � we have

Λl�ℎ� (�) = Λl�ℎ (�) |� + Λl (Vℎ ∧ V − i ∧ iℎ)

= Λl�
⊥
ℎ
(�) |� +

Λl)A�ℎ (�)
rank�

⊗ 1� + Λl (Vℎ ∧ V − i ∧ iℎ)

=
Λl)A (�ℎ (�))

rank�
⊗ 1� + Λl (Vℎ ∧ V − i ∧ iℎ).

where V ∈ A 1,0(- ◦,Hom(�,�⊥)) is the second fundamental form of � in � with
respect to the metric ℎ, and i ∈ A 1,0(- ◦,Hom(�⊥,�)) is equal to \ |�⊥ .

Hence∫
- ◦
)A (
√
−1�ℎ� (�)) ∧ l=−1 =

∫
- ◦
)A (Λl

√
−1�ℎ� (�))

l=

=

=

∫
- ◦

rank�
rank�

Λl)A (
√
−1�ℎ (�))

l=

=

+)AΛl (
√
−1Vℎ ∧ V −

√
−1i ∧ iℎ)

l=

=

=

∫
- ◦

rank�
rank�

)A (
√
−1�ℎ (�)) ∧ l=−1 − (|V |2

ℎ
+ |i |2

ℎ
)l

=

=

By Proposition 5.6 together with the above inequality, one concludes the slope in-
equality

`U (�) ≤ `U (�)
and the equality holds if and only if V ≡ 0 and i ≡ 0. We shall prove that if the above
slope equality holds, � is a sub-Higgs bundle of �, and we have the decomposition

(�, \ ) = (�, \ |� ) ⊕ (�, \� )
where (�, \� ) is another sub-Higgs bundle of �.

Set rank� = A and rank� = <. We �rst prove that � is a subbundle of �. It is
equivalent to show that det� → ΛA� is a subbundle, and we thus reduce the problem
to the case that rank� = 1. Assume that `U (�) = `U (�) and thus V ≡ 0 and i ≡ 0.
By (5.3.3), over - ◦ one has

√
−1'ℎ� (�) =

√
−1�ℎ (�) |� ≥ −) |- ◦,(5.3.12)

where) is the Kähler current de�ned in (5.3.2). By Lemma 4.5,
√
−1'ℎ� (�)+) extends

to a closed positive (1, 1)-current on t - − / , and thus to the whole - .
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Assume now G0 ∈ - is a point where (�/�)G0 is not locally free. Take a local
holomorphic frame 4 of � on some open neighborhood (* ; I1, . . . , I=) of G , and a
holomorphic frame 41, . . . , 4A of �. Then 4 =

∑A
8=1 58 (G)48 , where 58 ∈ O(*8) so that

51(G0) = · · · = 5A (G0) = 0. By the asssumption that ℎ is adapted to log order, one
concludes that

log |4 |2
ℎ
≤ �1 log( |I1 |2 + · · · + |I= |2) +�2 log(− log(

ℓ∏
8=1
|I |28 ))(5.3.13)

for some positive constants �1 and �2. On the other hand, by (5.3.12) on* we have
√
−1mm log |4 |2

ℎ
= −
√
−1'ℎ� (�) ≤ ) .

By the construction of ) , we conclude that

log |4 |2
ℎ
≥ �3 log(− log(

ℓ∏
8=1
|I |28 )) +�4,

for some �3 > 0 and �4 < 0. This contradicts with (5.3.13). Hence we conclude that
when the slope equality holds, � is a subbundle of �.

We now �nd the desired decomposition of (�, \ ). By the above argument, when
the slope equality holds, (�, \ |� ) is a Higgs subbundle of (�, \ ) (not assumed to be
rank 1 now), and V ≡ 0 and i ≡ 0. This means that the orthogonal projection c :
� |-−� → � |-−� is holomorphic, that �⊥ is a holomorphic subbundle of � |-−� , and
that

(�, \ ) |-−� = (�, \ |� ) |-−� ⊕ (�⊥, \ |�⊥).(5.3.14)

We shall prove that c extends to a morphism c̃ : � → � so that c ◦ ] = 1. For
any point G0 ∈ � , we pick an admissible coordinate (* ; I1, . . . , I=) centered at G0 and
a holomorphic fame (41, . . . , 4A ) for � |* adapted to log order so that (41, . . . , 4<) is a
holomorphic fame for � |* . Write c (4 9 |-−�) =

∑A
8=1 58 (G)48 , where 58 (G) ∈ O(* − �).

For 9 = 1, . . . ,<, one has c (4 9 |-−�) = 4 9 and it extends naturally. For 9 > <, over
* ∗ = * − � one has

� (− log(
ℓ∏
8=1
|I |28 ))" ≥ |4 9 |2ℎ ≥ |c (4 9 ) |

2
ℎ
≥ �8 9 |58 | |5 9 |

for some�," > 0, where�8 9 := ℎ(48, 4 9 ) with (�8 9 )1≤8, 9≤A adapted to log order. Hence
each |58 | is locally bounded from above on * , and it thus extends to a holomorphic
function on * . We conclude that c extends to a morphism c̃ : � → � , whose rank
is constant and c̃ ◦ ] = 1, where ] : � → � denotes the inclusion. Let us de�ne by
� := ker c̃ , which is a subbundle of � so that � = � ⊕ � . Note that � |-−� = �⊥. By
(5.3.14) together with the continuity propery we conclude that � is a sub-Higgs bundle
of (�, \ ), and that (�, \ ) = (�, \ |� )⊕ (�, \ |� ). Sinceℎ |� (resp. ℎ |� ) is a Hermitian-Yang-
Mills metric for (�, \ |� ) (resp. (�, \ |� )) satisfying the three conditions in the theorem,
we can argue in the same way as above to decompose (�, \ |� ) and (�, \ |� ) further to
show that (�, \ ) is a direct sum of `U -stable log Higgs bundles with the same slope.
Hence (�, \ ) is `U -polystable. We prove the theorem. �

5.4. Application to toroidal compacti�cation of ball quotient. Let Γ ∈ %* (=, 1)
be a torsion free lattice, and let B

=
�Γ be the associated ball quotient. By the work

of Baily-Borel, Siu-Yau and Mok [Mok12], B
=
�Γ has a unique structure of a quasi-

projective complex algebraic variety (see for example [BU20, Theorem 3.1.12]). When
the parabolic subgroups of Γ are unipotent, by the work of Ash et al. [AMRT10] and
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Mok [Mok12, Theorem 1], B
=
�Γ admits a unique smooth toroidal compacti�cation,

which we denote by - . Let us denote by � := - − B=�Γ the boundary divisor, which
is a disjoint union of abelian varieties. Let 6� be the Bergman metric for B= , which
is complete, invariant under %* (=, 1) and has constant holomorphic sectional cur-
vature −1. Hence it descends to a metric l on - − � . If we consider l as a met-
ric for )- (− log�) |-−� , by [To93, Proposition 2.1] it is good in the sense of Mum-
ford [Mum77, Section 1]. Therefore, by for any : ≥ 1, it follows from [Mum77,
Theorem 1.4] that the trivial extension of the Chern form 2: ()-−� , l) onto - de-
�nes a (:, :)-current [2: ()-−� , l)] on - , which represents the cohomology class
2: ()- (− log�)) ∈ �:,: (- ). Let us �rst prove (0.1.3), which is indeed an easy compu-
tation.

For any G0 ∈ - −� , we take a normal coordinate system (I1, . . . , I=) centered at G0
so that

l =
√
−1

∑
1≤ℓ,<≤=

Xℓ<3Iℓ ∧ 3Ī< −
∑
9,:,ℓ,<

2 9:ℓ<I 9 Ī: +$ ( |I |3)

where 2 9:ℓ< is the coe�cients of the Chern curvature tensor

'l ()- ) =
∑
9,:,ℓ,<

2 9:ℓ<3I 9 ∧ 3Ī: ⊗ (
m

mIℓ
)∗ ⊗ m

mI<
.

By [Mok89, p. 177], one has

2 9:ℓ< (G0) = −(X 9:Xℓ< + X 9<X:ℓ).(5.4.1)

Hence

21()-−� , l) |G0 = −
8

2c
(= + 1)l |G0

22()-−� , l) |G0 =
CA ('l ()-−�) ∧ 'l ()-−�)) − CA ('l ()-−�))2

8c2

=
(= + 1)l ∧ l |G0 − (= + 1)2l ∧ l |G0

8c2

This implies that
=21()-−� , l)2 − 2(= + 1)22()-−� , l) ≡ 0.

We thus conclude that the Chern classes 2: (Ω1
-
(log�)) satis�es

=21(Ω1
- (log�))2 − 2(= + 1)22(Ω1

- (log�)) = 0.

Hence (0.1.3) in Theorem B holds.
For the log Hodge bundle (�, \ ) = (�1,0 ⊕ �0,1, \ ), given by

�1,0 := Ω1
- (log�), �0,1 := O-

with the Higgs �eld \ de�ned in (0.1.1), we shall prove that it is `U -polystable for the
big and nef polarization U in Theorem 5.7. We equipped (�1,0 ⊕ �0,1) |-−� with the
metric

ℎ := l−1 ⊕ ℎ2(5.4.2)

where ℎ2 is the canonical metric on O-−� so that |1|ℎ2 = 1. Recall that the curvature
�ℎ (�) of the connection �ℎ := 3ℎ + \ + \ℎ is

�ℎ (�) = 'ℎ (�) + [\, \ℎ],
where 'ℎ (�) is the Chern curvature of (�,ℎ). Let us now compute �ℎ (�), which is
also an easy exercise.
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To distinguish the sections of Higgs bundles and forms, we write 48 := 3I8 , and
denote by 40 = 1 the constant section of O- . Hence (40, 41, . . . , 4=) is an orthonormal
basis at G0 with respect to the metric ℎ, and

\ (40) = 0, \ (48) = 40 ⊗ 3I8 for 8 = 1, . . . , =.

Moreover,

\ℎ (40 |G0) =
=∑
9=1

4 9 |G0 ⊗ 3Ī 9 ; \ℎ (48) = 0 for 8 = 1, . . . , =

Then one has

'ℎ (�) = −2 9:<ℓ3I 9 ∧ 3Ī: ⊗ (4ℓ)∗ ⊗ 4< .

By (5.4.1), for 8 = 1, . . . , =,
√
−1�ℎ (�) (48 |G0) = −

∑
9,:,<

√
−12 9:<83I 9 ∧ 3Ī: ⊗ 4< |G0 +

∑
:

√
−13Ī: ∧ 3I8 ⊗ 4: |G0

=
∑
9

√
−13I 9 ∧ 3Ī 9 ⊗ 48 |G0 +

∑
:

√
−13I8 ∧ 3Ī: ⊗ 4: |G0

+
∑
:

√
−13Ī: ∧ 3I8 ⊗ 4: |G0 = l ⊗ 48 |G0 .

Also, √
−1�ℎ (�) (40 |G0) =

√
−1\ ∧ \ℎ (40 |G0) = l ⊗ 40 |G0

In conclusion, one has √
−1�ℎ (�) = l ⊗ 1,

In particular, ℎ is a Hermitian-Yang-Mills metric for (�, \ ) |-−� . We shall show that it
satis�es the three conditions in Theorem 5.7. Indeed, we only have to check the �rst
two conditions since

√
−1�ℎ (�)⊥ ≡ 0.

We �rst note that l has at most Poincaré growth near � in the sense of De�ni-
tion 1.4. Indeed, this follows easily from the Ahlfors-Schwarz lemma (see for ex-
ample [Nad89, Lemma 2.1]) since the holomorphic sectional curvature of l is −1.
Hence for any admissible coordinate system (* ; I1, . . . , I=) as in De�nition 1.3, one
has |�ℎ (�) |ℎ,l% ≤ � , where l% is the Poincaré metric on* ∗.

By the following result, we see that ℎ is adapted to log order.

Lemma 5.8 ( [Mok12, eq. (8) on p. 338]). Let (-, �) be as above. Then for any G ∈ � ,
there is an admissible coordinate (* ; I1, . . . , I=) atG so that the frame I1

m
mI1
, m
mI2
, . . . , m

mI=−1
, m
mI=

is adapted to log order (in the sense of § 4.1) with respect to the above metric l .

Therefore, the metric ℎ for (�, \ ) |-−� satis�es the three conditions in Theorem 5.7.
In conclusion, (�, \ ) is `U -polystable for the big and nef class U in Theorem 5.7

To �nish the proof of Theorem B, we have to show that 21( - +�) can be made as
a polarization in Theorem 5.7, which follows from the following result.

Lemma 5.9 ( [Mok12, Proposition 1]). The Kähler form (=+1)
2c l on- −� de�ned above

extends to a closed positive (1, 1)-current s ∈ 21( - + �) with zero Lelong numbers. In
particular,  - + � is big and nef.

Let us provide a quick proof here for completeness sake.
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Proof of Lemma 5.9. Note that the volume form l= de�ned a metric ℎE for ( - +
�) |-−� , which is adapted to log order by Lemma 5.8. By (5.4.1), one has

'82 (l) = −(= + 1)l.

Hence
√
−1'ℎE (( - + �) |-−�) = (= + 1)l . By Lemma 4.5, ℎE extends to a singular

metric ℎ̃E for  - + � so that its curvature current
√
−1'

ℎ̃E
( - + �) is positive. The

Lelong number of
√
−1'

ℎ̃E
( - +�) is zero everywhere since ℎ̃E is adapted to log order.

This shows that  - + � is big and nef, which is ample over - − � . �

6. Conjugate non-compact ball qotient

As an application of Theorems A and B, we shall prove that the conjugate of non-
compact ball quotient under an automorphism of C is still a ball quotient. It was
proved by Kazhdan [Kaz83] for arithmetic lattice, and by Mok-Yeung [MY93] and
Baldi-Ullmo [BU20] for non-arithmetic lattice. The cocompact case can be easily
proved using the Miyaoka-Yau inequality in [Yau78].

Let us make the following conventions for this section. Let - be a complex projec-
tive variety with -alg the corresponding algebraic variety over C. For any coherent
sheaf E on - , denote by Ealg the corresponding coherent sheaf on -alg. Conversely,
for any coherent sheaf Ealg on-alg, we denote by E the corresponding coherent sheaf
on - .

Proof of Corollary C. We �rst assume that parabolic subgroups of Γ are unipotent.
By [Mok12, Theorem 1], there is a toroidal compacti�cation - for the ball quotient
- := B

=
�Γ, so that� := - −- is a smooth divisor. Moreover,- is projective, whose al-

gebraic structure is unique, denoted by - alg. By Grothendieck’s comparison theorem
(see e.g. [CS14, Theorem 11.1.2]), there is a canonical isomorphism

i : � 8 (- alg)
∼−→ � 8 (-,C).(6.0.1)

Consider the conjugate variety -falg by the Cartesian diagram

-
f

alg - alg

Spec(C) Spec(C)

f−1

f∗

Then �falg := f−1(�alg) is also a smooth divisor on the smooth projective variety-falg.
Denote by (-f , �f ) the analyti�cation of (-falg, �

f
alg). We are going to show that the

projective log pair (-f , �f ) satis�es all the conditions in Theorem A.
We set up the notations in what follows. For a coherent sheaf Falg on - alg, we

denote by F falg := (f−1)∗Falg, whose analyti�cation is denoted by F f .
Fix an ample line bundle !alg on - alg. Then !f is an ample line bundle over -f .

By [CS14, p. 473] f−1 induces natural isomorphism

(f−1)∗ : � 8 (- alg)
∼−→ � 8 (-falg).(6.0.2)

and

(f−1)∗Ω8
- alg
(log�alg)

∼−→ Ω8
-
f

alg
(log�falg) .(6.0.3)
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Moreover, for any vector bundle �alg on - alg, one has
i (2: (�alg)) = 2: (�)(6.0.4)

and
(f−1)∗(2: (�alg)) = 2: (�falg).

By (0.1.3) in Theorem B, one has

222(Ω1
-
(log�)) − =

= + 1
21(Ω1

-
(log�))2 = 0.(6.0.5)

It then follows from (6.0.3) and (6.0.4) that

222(Ω1
-
f (log�f )) − =

= + 1
21(Ω1

-
f (log�f ))2 = 0.(6.0.6)

By Theorem B, the log Higgs bundle (�, \ ) := (Ω1
-
(log�) ⊕ O

-
, \ ) de�ned as (0.1.1)

is `!-polystable. By (6.0.3), its conjugate via f is the log Higgs bundle (�f , \f ) :=
(Ω1

-
f (log�f ) ⊕ O

-
f , \f ), where \f is de�ned as (0.1.1). Let F ⊂ �f be any saturated

coherent Higgs sub-sheaf. Then F f−1 is a Higgs subsheaf of (�, \ ). Note that we
always have the slope inequality `! (F f

−1) ≤ `! (�), and the equality holds if and
only if (F f−1

, \ |F f−1 ) is a direct summand of (�, \ ). It then follows from (6.0.3) and
(6.0.4) that

`!f (F ) = `! (F f
−1) ≤ `! (�) = `!f (�f ).(6.0.7)

Note that the conjugate of (F f−1)f = F for f ◦f−1 = 1. We thus conclude that, when
the equality (6.0.7) holds, (F , \f |F ) is a direct summand of (�f , \f ). Hence the log
Higgs bundle (�f , \f ) is `!f -polystable.

In conclusion, the projective log pair (-f , �f ) satis�es all the conditions in Theo-
rem A. Applying Theorem A, we conclude that the universal cover of -f = -

f − �f
is also the complex unit ball B= . This proves the corollary when parabolic subgroups
of Γ are unipotent.

In the general case, there is a �nite index subgroup Γ′ ⊂ Γ so that parabolic sub-
groups of Γ′ are unipotent (see for example [BU20, §3.3]). Denote by - := B

=
�Γ and

. := B=�Γ′. Recall that there are unique algbraic varieties -alg and .alg whose ana-
lyti�cations are - and . . The �nite cover . → - induces a �nite étale surjective
morphism .alg → -alg. Since the base change of an étale morphism is étale, we con-
clude that .falg → -falg is also a �nite étale surjective morphism. By the above result,
.f is the ball quotient. Since .f → -f is a �nite cover, -f is also the ball quotient.
The corollary is proved. �

Appendix A. Metric rigidity for toroidal compactification of non-compact
ball qotients

by Benoît Cadorel and Ya Deng

The main motivation of this appendix is to provide one building block for Theo-
rem A. Our main result, Theorem A.8, says that there is no other smooth compacti�ca-
tion for non-compact ball quotient than the toroidal one, so that the Bergman metric
grows “mildly” near the boundary. Besides its own interests, this result is applied in
this paper to show that
• the smoothness of � in Theorem A is necessary if one would like to characterize

non-compact ball quotients;
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• the “moreover”-statement of Theorem A: the projective log pair (-, �) is the toroidal
compacti�cation of a non-compact ball quotient.

A.1. Toroidal compacti�cations of quotients by non-neat lattices. In this sec-
tion, we recall a well known way of constructing the toroidal compacti�cations of ball
quotients in the case where the lattice has torsion at in�nity. The reader will �nd more
details about the natural orbifold structure on these compacti�cations in [Eys18]. For
our purposes, the basic result given in Proposition A.1 will be su�cient.

Recall that we say that a lattice Γ ⊂ %* (=, 1) is neat (cf. [Bor69]) if for any 6 ∈ Γ,
the subgroup of C∗ generated by the eigenvalues of 6 is torsion free. This implies
that Γ is torsion free and that all parabolic elements of Γ are unipotent, so that the
toroidal compacti�cations of B

=
�Γ provided by [AMRT10, Mok12] are smooth (there

is no "torsion at in�nity").
Proposition A.1. Let Γ ⊂ %* (=, 1) be a torsion free lattice, and let Γ′ ⊂ Γ be a �nite
index normal neat sublattice. Let * = B=�Γ, *

′ = B=�Γ′, and denote by - ′ the smooth
toroidal compacti�cation of* ′ = B

=
�Γ′ as constructed in [AMRT10,Mok12].

Then the natural action of the �nite group � = Γ�Γ′ on *
′ extends to - ′, and the

quotient - = -
′
�� is a normal projective space, with boundary - −* made of quotient

of abelian varieties by �nite groups. Moreover, when Γ is arithmetic, - coincides with
the toroidal compacti�cation of* constructed in [AMRT10].

Remark A.2. By [Bor69, Proposition 17.4] in the arithmetic case, and [Bor63], or
[Rag72, Theorem 6.11] in the general case, any lattice in %* (=, 1) admits a �nite index
neat sublattice.

Before explaining how to prove Proposition A.1, let us recall the construction of- ′
as it is de�ned in [Mok12] (see also [Cad16] for a similar discussion).

Each component � of - ′ − * ′ is associated to a certain Γ′-orbit of points of mB= ,
whose points are called the Γ′-rational boundary components of m�= (cf. [AMRT10,
Chapter 3] or [Mok12, §1.3]). Let 1 ∈ mB= be such a point, and let #1 ⊂ %* (=, 1)
the stabilizer of 1. This is a maximal parabolic real subgroup of %* (=, 1) ; let us
denote by,1 its unipotent radical. This group can be written as an extension 1 →
*1 → ,1

c→ �1 → 1, where �1 � C=−1, and *1 � R is the center of ,1 . Let
!1 =

#1�,1
. This reductive group can be embedded as a Levi subgroup in #1 , so that

#1 =,1 ·!1 . Moreover, we have a decomposition !1 = * (=− 1) ×R, where the factor
* (= − 1) corresponds to complex rotations around the axis C1, and R corresponds
to transvections of B= along the axis R1 (this description of,1 can be obtained e.g.
by specializing the discussion of [BB66, Section 1.3] or [AMRT10, Section 4.2] to the
case of the ball).

This Lie theoretic description of #1 can be understood more easily by expressing
the action of the previous groups on the horoballs tangent to 1. Let (( (# )

1
)#≥0 be the

family of these horoballs. Each ( (# )
1
⊂ B= can be described as an open subset in a

Siegel domain of the third kind, as follows:

(A.1.1) (
(# )
1
' {(I′, I=) ∈ C=−1 × C | Im I= > | |I′| |2 + # }.

We have ( (0)
1

= B= , and when 1 = (0, ..., 0, 1), the change of coordinates between the
two descriptions of the ball is given by the Cayley transform

(F1, ...,F=−1,F=) ∈ B= ↦→ (I′, I=) = (
F1

1 −F=
, ...,

F=−1

1 −F=
, 8

1 +F=
1 −F=

) ∈ ( (0)(0,...,0,1) .
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The previous expression for ( (# )
1

can be used to give explicit formulas for the action
of ,1 and !1 on the ball. If 6 ∈ ,1 , we can write 6 = (B, 0) accordingly to the
decomposition,1

B4CB
= *1 × �1 (*1 � R, �1 � C=−1), and we have, for any (F ′,F=) ∈

(
(# )
1

:

(A.1.2) 6 · (I′, I=) = (I′ + 0, I= + 8 | |0 | |2 + 280 · I′ + B).

We check easily that ( (# )
1

is preserved by,1 . Also, for any 6 ∈ !1 ' * (= − 1) × R,
we can write 6 = (A, C), and we then have

(A.1.3) 6 · (I′, I=) = (4C (A · I′), 42CI=).

Note that the element 6 above sends ( (# )
1

onto ( (4
2C# )

1
.

We are now ready to describe the quotients of ( (# )
1

by the action of Γ′ ∩ #1 . Note
�rst that since Γ′ is neat, we have Γ′ ∩ #1 ⊂ ,1 . Then, by the discussion above, we
obtain a decomposition as sets#1

B4CB
= (C=−1×R)×(* (=−1)×R), in which the elements

of Γ′∩#1 can be written as (0, C, Id, 0). It also follows from [Mok12] that Γ′∩*1 = Zg

for some g ∈ *1 ' R. This last fact permits to form the quotient� (# )
1

=
(
(# )
1 �*1 ∩ Γ′;

using (A.1.1), we can also express the latter quotient as an open subset of C=−1 × C∗:

�
(# )
1

= {(F ′,F=) ∈ C=−1 × C∗ | |F= |4
2c
g
| |F ′ | |2 < 4−

2c
g
# },

and the quotient is then realized by the map (I′, I=) ∈ ( (# )1
→ (I′, 4 28c

g
I= ) ∈ � (# )

1
.

The group Λ1 := c (Γ′ ∩,1) ⊂ C=−1 is an abelian lattice of rank 2(= − 1), which
acts on � (# )

1
⊂ C=−1 × C∗ as

0 · (I′, I=) = (I′ + 0, 4−
2c
g
| |0 | |2− 4c

g
0·I ′I=),

Clearly, the closure � (# )
1

in C= is an open neighborhood of C=−1 × {0}. We can form
the quotient

Ω(# )
1

=
�
(# )
1 �Λ1

which is then isomorphic to a tubular neighborhood of the abelian variety C
=−1
�Λ1 in

some negative line bundle. Finally, the toroidal compacti�cation - ′ can be obtained
by glueing the open varieties Ω(# )

1
to* ′ (as 1 runs among a system of representatives

of the rational boundary components, and # is chosen large enough for each cusp).

Our claims about - can be derived from the following lemma.

Lemma A.3. Let 1 ∈ mB= be a Γ′-rational boundary component, and let 6 ∈ Γ. Then
the point 1′ = 6 · 1 is also Γ′-rational, and there exists #, # ′ > 0, for which 6 induces
an isomorphism (

(# )
1

6
→ (

(# ′)
1 ′ , yielding in turn a unique compatible biholomorphism

Ω(# )
1
→ Ω(#

′)
1 ′ .

Proof. As Γ′ is torsion free, a point I ∈ mB= is Γ′-rational if and only if,1 ∩ Γ′ ≠ {4}
(see [Mok12, §1.3]). Since 6 normalizes Γ′, we have 6(,1 ∩ Γ′)6−1 ⊂,1 ′ ∩ Γ′ so 1′ is
Γ′-rational if 1 is.

As for our second claim, since the set of horoballs is preserved by the action of
%* (=, 1), we may �nd #, # ′ such that 6 induces a isomorphism (

(# )
1
→ (

(# )
1 ′ . Let

(G′, G=) (resp. (~′, ~=)) be standard coordinates on ( (# )
1

(resp. ( (#
′)

1
) as in (A.1.1). It
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is always possible to choose the coordinates so that (~′, ~=) = (G′, G=) ◦ D for some
D ∈ * (=) satisfying D · 1′ = 1. Then D6 ∈ #1 , and the formulas (A.1.2) and (A.1.3)
imply that (G′, G=) ◦ (D6) is an a�ne function of (G′, G=). Thus (~′, ~=) ◦ 6 = 5 (G′, G=)
for some a�ne map 5 .

Since 6 normalizes Γ′, we have 6(Γ′ ∩*1)6−1 = Γ′ ∩*1 ′ , so the map ( (# )
1

6
→ (

(# ′)
1

passes to the quotient to give a map 6̃ : � (# )
1
→� (#

′)
1 ′ . Using an explicit expression for

the a�ne map 5 , we �nd an (a priori multivaluate) expression for 6̃ as

(I′, I=) ∈ � (# )1

6̃
↦→ (� · I′ + D log I= + I′0, � I0= 41·I

′) ∈ � (#
′)

1 ′

for some � ∈ "=−1(C), some vectors D,1, I′0 ∈ C=−1 and �, 0 ∈ C. Since the for-
mula above must yield a well-de�ned, invertible map � (# )

1
→ �

(# ′)
1 ′ , we must have

D = 0, 0 = 1. This shows that 6̃ has unique holomorphic extension � (# )
1
→ �

(# ′)
1 ′ .

Finally, as 6 normalizes Γ′, this map passes to the quotient by Λ1 = c (Γ ∩,1) (resp.
Λ′
1
= c (Γ∩,1 ′)), which gives a uniquely de�ned biholomorphism Ω(# )

1
→ Ω(#

′)
1 ′ . �

Remark A.4. Note that it is easy to describe the action of the stabilizers of the bound-
ary components of- ′−* ′. Assume indeed that 6 ∈ Γ preserves one of the Γ′-rational
boundary components 1 ∈ mB= . Then we can write 6 = D · 3 , in the Levi decomposi-
tion #1 =,1 · !1 , and further decompose D = (B, 0) (in,1

B4CB
= *1 ×�1), and 3 = (A, C)

(in !1 = * (=−1) ×R). Now, since Γ′ ⊂ Γ is of �nite index, and since Γ′∩#1 ⊂,1 , the
element 3 has �nite order. This implies that C = 0, so 3 is simply a unitary rotation
around the complex axis C1.

It is now clear from the explicit formulas (A.1.2) and (A.1.3) that the action of 6 on
�
(# )
1

can be described as

6 · (I′, I=) = (AI′ + 0, 4−
2c
g
| |0 | |2− 4c

g
0·(AI ′)+ 28c

g
BI=),

and this formula induces in turn a natural action on Ω(# )
1

. We see in particular that

6 acts on the abelian variety C
=−1
�Λ1 via an a�ne map, with linear part belonging to

* (= − 1).
Going back to the proof of Proposition A.1, we see that Lemma A.3 permits to

de�ne a unique action of the quotient � = Γ�Γ′ on - ′ compatible with its natural
action on * ′. The complex projective space - can be de�ned as the quotient -

′
�� .

The following lemma ends the proof of Proposition A.1, and clari�es the link with
the construction of [AMRT10].

LemmaA.5. The variety- de�ned above does not depend on the choice of Γ′. When the
lattice Γ is arithmetic,- coincides with the toroidal compacti�cation of* as constructed
in [AMRT10].

Proof. Let Γ′, Γ′′ ⊂ Γ be two neat lattices of �nite index. We want to show that the
varieties constructed from Γ′ and Γ′′ are the same. Since Γ ∩ Γ′ also has �nite index
in Γ, we may assume Γ′′ ⊂ Γ′. The previous discussion shows that the action of two
lattices Γ′′ ⊂ Γ′ are compatible with each other on each open set� (# )

1
, which su�ces

to prove the �rst point. In general, we can also argue as follows.
For any arithmetic quotient of a hermitian symmetric space Ω�Γ, the construc-

tion of a toroidal compacti�cation of [AMRT10] depends on a certain choice of Γ-
admissible polyhedra for each rational boundary component (see [AMRT10, De�ni-
tion 5.1]). In the case where Ω = B= , since dimR*1 = 1 for any 1 ∈ mB= , there
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is only one such possible choice (cf. [loc. cit., Theorem 4.1.(2)]). Both claims then
follow from the functoriality of toroidal compacti�cations (see [Har89, Lemma 2.6]),
since “choices” of polyhedra admissible for two lattices Γ′ ⊂ Γ are thus automatically
compatible with each other. �

Note that even though this construction of - is well adapted to our purposes, it
should not be used to de�ne - as an orbifold, as it has the drawback of producing
arti�cial rami�cation orders along the boundary components of - . As explained
in [Eys18], a better way of proceeding would be to construct directly open neigh-
borhoods of the components of - −* as stacks, before glueing them to* .

A.2. Main results. Let us �rst begin with the following lemma.

Lemma A.6. Let . be the toroidal compacti�cation of the ball quotient* := B
=
�Γ by a

torsion free lattice Γ ⊂ %* (=, 1) whose parabolic isometries are all unipotent. Let - be
another projective compacti�cation of* , and assume one of the following:

(a) - has at most quotient singularities,
(b) or, more generally, - has at most klt singularities.

Then the identity map of* extends to a birational morphism 5 : - → . .

Proof. The identity map of * extends to a birational map 5 : - d . . It su�ces to
show that 5 is regular. Assume by contradiction that 5 is not regular. One can take
a resolution of indeterminacy ` : -̃ → - for 5 so that ` |`−1 (* ) : `−1(* ) ∼−→ * is an
isomorphism and

-̃

- .

` 5̃

5

By the rigidity result (see [Deb01, Chapter 3, Lemma 1.15]), there is at least one �ber
`−1(I) with I ∈ � which cannot be contracted by 5̃ . Clearly, we have 5̃ (`−1(I)) ⊂
. −* .

(1) If - has quotient singularities, [Kol93, Theorem 7.5] implies that every �ber
of ` is simply connected. As . −* is a disjoint union of Abelian varieties �
by [AMRT10, Mok12], the image of 5̃ : `−1(I) → . −* must be a point.

(2) If we assume only that - has klt singularities, we can use the work of Hacon-
McKernan [HM07] which implies that every �ber of ` is rationally connected.
In this case, 5̃ (`−1(I)) is also a point since abelian varieties do not contain
rational curves.

This is a contradiction in both cases. �

Let us introduce a natural class of pairs under which our rigidity theorem will hold.

De�nition A.7. Let (-, �) be a pair consisting of normal algebraic variety and a
reduced divisor. We say that the pair (-, �) has algebraic quotient singularities if it
admits a �nite a�ne cover (-8)8∈� , such that each (-8, � ∩ -8) is the quotient of a
smooth SNC pair (*8, �8) by a �nite group �8 leaving �8 invariant.

We can now state our main result as follows.

TheoremA.8. Let* := B
=
�Γ be an =-dimensional ball quotient by a torsion free lattice

Γ ⊂ %* (=, 1). Let - be a normal compacti�cation of * , and let � := - − * . Assume
one of the following:
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(1) � is a reduced divisor, and the pair (-, �) has algebraic quotient singularities;
(2) the variety - has at most klt singularities.

Let� (1) ⊂ � be the divisorial part of� . If the Kähler-Einsteinmetricl for)- (− log� (1)) |*
is adapted to log order near the generic point of any component of� (1) , then (-, �) iden-
ti�es with the toroidal compacti�cation of* .

Remark A.9. (1) Note that if (-, �) has algebraic quotient singularities, then - is
klt; however the proof in case (0) will not appeal to the di�cult result of [HM07]
which was used in Lemma A.6. Note also that for any lattice Γ ⊂ Aut(B=), if - is
the toroidal compacti�cation of* = B

=
�Γ described in Section A.1, then the pair

(-,- −* ) has algebraic quotient singularities. This class of pairs seems then to
be a natural setting for Theorem A.8 to hold.

(2) As an easy consequence of the case (1) above, we can remark that there is no klt
compacti�cation - of* such that - −* has codimension ≥ 2.

Corollary A.10. With the same assumptions as in Theorem A.8, if - is smooth and �
has simple normal crossings, then � is in fact smooth, and each component is a smooth
quotient of an abelian variety � by some �nite group acting freely on �.

Let us prove Theorem A.8. For the time being, we do not distinguish between our
two hypotheses on - . Let Γ′ ⊂ Γ be a subgroup of �nite index so that all parabolic
elements of Γ′ are unipotent. Writing * ′ := B=�Γ′, this gives a �nite étale surjective
morphism `0 : * ′→ * .

Let - ′ be the normalization of - in the function �eld of * ′: this is a normal pro-
jective variety - ′ compactifying * ′ so that `0 extends to a (unique) �nite surjective
morphism ` : - ′ → - (see e.g. [AHCG11, Chapter 12, §9]). Let us recall how to
construct - ′ . We �rst take an arbitrary smooth projective compacti�cation -̃ of * ′
so that `0 extends to a rational map ˜̀ : -̃ d - . We then take a further blow-up
-̃ ′ → -̃ so that its composition with ˜̀, denoted by `′ : -̃ ′ → - , is a generically
�nite surjective morphism. Take a Stein factorization -̃ ′ → - ′

`
−→ - for `′. Then

` : - ′ → - is a �nite surjective morphism with - ′ normal projective variety. One
can check that such a morphism ` does not depend on the choice of -̃ and -̃ ′.

Lemma A.11. The variety - ′ has one of the following types of singularities:
(a) if the pair (-, �) has algebraic quotient singularities, then- ′ has algebraic quo-

tient singularities ;
(b) if - has klt singularities, then - ′ also has klt singularities.

Proof. The case (1) is easy to settle, since klt singularities are preserved under �nite
surjective morphisms (see [KM98, Corollary 5.20]). Let us now deal with the case
(0). Note that the statement is local on - , so since (-, �) has algebraic quotient
singularities, we can assume that there exists a �nite cover g : / → - such that
� = g−1(�) has simple normal crossings. In this setting, (-, �) is the quotient of
(/, �) by a �nite groupoid G leaving � invariant. Let / ′ be the normalization of the
�ber product / ×- - ′. We get a commutative diagram:

/ ′ - ′

/ -

@

g
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The map @ : / ′ → / is a �nite dominant morphism between normal varieties, with
/ smooth. Moreover, it is étale above / − �, where � is SNC. Hence, [Kol07, Theo-
rem 2.23] implies that / ′ has abelian quotient singularities. To conclude, remark that
Lemma A.12 below implies that - ′ is the �nite quotient of / ′ by the groupoid G. In-
deed, with the notations of this lemma, it su�ces to check that '(/ ′)G = '(- ′). This
can be seen easily from the identi�cations '(/ )G = '(- ) and '(/ ′) = '(/ ) ⊗'(- )
'(- ′). �

In the above proof, we made use of the following simple lemma, that we include
for completeness.

Lemma A.12. Let 5 : " → # be a �nite surjective morphism between two normal
reduced schemes. Assume that " is acted upon by a �nite groupoid G, and that 5 is
G-invariant. Suppose in addition that '(")G = '(# ), where '("), '(# ) are the rings
of rational functions on", # . Then # is the quotient of" by G.
Proof. It su�ces to show that 5∗(O" )G = O# . This is a local statement on the base,
so we may assume that # = Spec�, " = Spec�, and � is integral. We then have a
�nite extension � ⊂ �. Let B ∈ �G . Then B ∈ '(�)G = '(�) by assumption. As the
element B is �nite over�, and� is integrally closed, this implies B ∈ �. This gives the
result. �

Let . ′ be the toroidal compacti�cation of * ′, so that the boundary � := . ′ −* ′ is
a smooth divisor.

Lemma A.13. The identity map on* ′ extends as an isomorphism 5 : - ′→ . ′.

Proof. By Lemma A.6 and Lemma A.11, the identity map of* ′ extends to a birational
morphism 5 : - ′ → . ′ in case (a), or in the more general case (b). From now on, we
will not distinguish between these two cases anymore.

Assume by contradiction that 5 is not an isomorphism. As . ′ is smooth, it follows
from [KM98, Corollary 2.63] that the exceptional set Ex(5 ) is of pure codimension
one. Thus, the birational morphism 5 must contract at least one irreducible divisor,
denoted by �, which must be an irreducible divisorial component of the boundary
�′ := - ′ −* ′. Denote by �sing the singular locus of � . Pick any point G′ ∈ `−1(� −
�sing) ∩ �. Note that G := ` (G′) belongs to the divisorial part � (1) . Let us take an
admissible coordinate chart (V;G1, . . . , G=) centered at G with (G1 = 0) = V ∩ � so
that the frame (3 logG1, 3G2, . . . , 3G=) for Ω1

-
(log� (1)) |V is adapted to log order with

respect to the metric l−1. Let l′ := `∗l , be the canonical Kähler Einstein metric on
* ′.

Lemma A.14 below shows that l′ is adapted to log-order for )- ′◦ (− log�◦), where
- ′◦ := `−1(- − �sing), and �◦ := - ′◦ ∩ �. We are going to derive a contradiction
with the fact the � is contracted. Denote by �1 a component of � so that 5 (�) ⊂ �1.
We can take admissible coordinates (W; I1, . . . , I=) and (U;F1, . . . ,F=) centered at
some well-chosen G′ ∈ � ∩ - ′◦ and ~ := 5 (G′) ∈ �1 respectively so that 5 (W) ⊂ U,
and 5 |� : � → 5 (�) is smooth at G′. Moreover, within these coordinates, � ∩W =

�′ ∩W = {I1 = 0}, and �1 ∩ U = � ∩ U = {F1 = 0}. Denote by (51(I), . . . , 5= (I))
the expression of 5 within these coordinates. Then if the admissible coordinates are
chosen properly, one has

(51(I), . . . , 5= (I)) = (I<1
1 61(I), . . . , I<:1 6: (I), 6:+1, . . . , 6=)

where 61(I), . . . , 6: (I) are holomorphic functions de�ned on W so that 68 (I) ≠ 0
and <8 ≥ 1 for 8 = 1, . . . , : . Since � is exceptional, one has : ≥ 2. By the norm
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estimate in [Mok12, eq. (8) on p. 338], the Kähler-Einstein metric l for). (− log�) |*
is adapted to log order. More precisely, one has

|3F2 |2l−1 ∼ (− log |F1 |2).
Since

5 ∗3 logF2 =<23 log I1 + 3 log62(F),
one thus has the following norm estimate

|3 log I1 |2l ′−1 ≥
1
<2

2
`∗ |3 logF2 |2l−1 −

1
<2

2
`∗ |362

62
|2
l−1 ≥

� (− log |I1 |2)
|I1 |2<2

for some constants � > 0. Since 3 log I1 is a local nowhere vanishing section for
Ω1
- ′ (log�′), we conclude that the metric l′−1 for Ω1

- ′◦ (− log�′◦) is not adapted to
log order, and so is l′ for )- ′◦ (− log�′◦).

The contradiction is obtained, which ends the proof of the lemma. �

Lemma A.14. With the notations of the proof of Lemma A.13, the metric l′ is adapted
to log-order for )- ′◦ (− log�◦).

Proof. WriteW := `−1(V). Since ` |W−� ′ :W − �′ → V − � is a �nite unrami�ed
cover, the image of (` |W−� ′)∗

(
c1(W − �′)

)
is a subgroup of c1(W − �) ' Z index

<. Set

a : Δ= → Δ=

(I1, . . . , I=) ↦→ (I<1 , I2, . . . , I=)
One thus has the following commutative diagram

Δ∗ × Δ=−1 W

Δ= V

a |Δ∗×Δ=−1

ℎ◦

` |W
'

so that ℎ◦
Δ∗×Δ=−1 : Δ∗ × Δ=−1 → W ∩ * ′ is an isomorphism. By the Riemann re-

movable singularities theorem, ℎ extends to a holomorphic map ℎ : Δ= → W. One
can easily check that ℎ is surjective with �nite �bers. Hence ℎ is moreover biholo-
morphic. (W; I1, . . . , I=;ℎ) is therefore an admissible coordinate centered at G′ with
(I1 = 0) =W ∩ �′ so that ` is expressed as a within the admissible coordinates of
(W; I1, . . . , I=) and (V;G1, . . . , G=). . Since

`∗3 logG1 =<3 log I1, `
∗3G2 = 3I2, . . . , `

∗3G= = 3I=,

the frame (3 log I1, 3I2, . . . , 3I=) for Ω1
- ′ (log�′) |W is adapted to log order. This shows

that the metric l′ is adapted to log order for )- ′◦ (− log�′◦). �

We have shown that there is a �nite surjective morphism

6 : . ′→ -,

which identi�es with the étale and surjective map* ′→ * over - − � .

We can now conclude the case discussed in Corollary A.10, where (-, �) is as-
sumed to be a smooth log-pair. Since the irreducible components of . ′ −* ′ are con-
nected, this implies right away that � must be smooth. Moreover, for each connected
component �8 of �, there is a connected component � 9 of � so that 6 |�8 : �8 → � 9

is a �nite surjective morphism, which is also étale by the local description of ` given
in the proof of Lemma A.14. Hence in this case, �8 is a smooth quotient of an abelian
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variety by the free action of some �nite group�8 . This su�ces to establish Corollary
A.10.

The proof of Theorem A.8 will be complete with the following lemma.

Lemma A.15. The variety - identi�es with the quotient of . ′ by the natural action of
� = Γ�Γ′.

This result comes right away from Lemma A.12, taking" = . ′, # = - , and� = G.
Remark that we have '(. ′)� = '(* ′)� = '(* ) = '(- ) since* = *

′
�� .

To conclude, it su�ces to remark that Proposition A.1 claims that the toroidal com-
pacti�cation . of * also identi�es with the quotient .

′
�� . Thus, there is an isomor-

phism . � - compatible with the identity on* . Theorem A.8 is proved.
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