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Abstract

We consider stability and evolution of complex biological systems in particular, genetic
networks. We focus our attention on supporting of homeostasis in these systems with
respect to fluctuations of an external medium (the problem is posed by M. Gromov,
A.Carbone [32]). Using a measure of stochastic stability we show that a generic system
with fixed parameters is unstable, i.e., the probability to support homeostasis converges
to zero as time T" — oco. However, if we consider a population of unstable systems, which
are capable to evolve (change their parameters), then such a population can be stable as
T — oo. This means that the probability to survive may be non-zero as T' — oo.

Evolution algorithms, that provide stability of populations, are not trivial. We show
that the mathematical results on evolution algorithms are consistent with experimental
data on genetic evolution.

1 Introduction

1.1 Structural stability

R. Thom, in the book [1], has proposed the concept of structural stability to describe
mathematically complex structures emerging in biology and other applications. This approach
has been developed and successfully applied by many authors ( catastrophe theory, see [2] for a
overview).

However, this concept also leads to some difficulties [4]. For example, theory of dynamical
systems shows that structurally stable systems are not dense (S. Smale, [3, 4, 5]). There are
examples of chaotic structurally stable dynamical behaviour (hyperbolic dynamics, see [3, 5]),
but a typical system issued from applications and exhibiting a complicated large time behaviour,
is not structurally stable. It is difficult to find systems defined by polynomial differential

equations satisfying the Smale criterium of structural stability. We have a similar problem



with so-called stable maps: generically, they are not dense [6]. On the other hand, computer
investigations of models of ecological systems show that, in many cases, they are not stable [8].
A great discussion on this problem can be found in [7], chapter 21, where the final conclusion
is that the general notion of stability does not make a great sense for ecological systems. The
stability strongly depends on the type of perturbations. We know, for example, that human
interventions often destroy ecological systems.

Our start point is a remark from [32], where M. Gromov and A. Carbone formulated the
following problem: ”Homeostasis of an individual cell cannot be stable for a long time as
it would be destroyed by random fluctuations within and without cell. There is no adequate
mathematical formalism to express the intuitively clear idea of replicative stability of dynamical
systems” ([32], p.40).

This assertion formulates two hypothesis. First, that functioning of biological systems are
unstable under random perturbations. Second, these systems can be stabilized by replication
(evolution).

The goal of this paper is to formulate mathematically and prove these hypothesis for some
classes of systems important in biology, chemistry and other applications. We introduce a
measure of homeostasis stability under random perturbations. After, we show that, in a sense,
almost all individual systems with fized parameters are actually unstable for large times T,
however, populations of evolving systems with changing (from time to time) parameters can be
stable even as T — oo. Our approach to this homeostasis problem uses probabilistic methods,
some ideas on structural stability (in particular, R. Thom’s results) and the algorithms theory.
We demonstrate that this approach explains some fundamental properties of biological evolution
(see Section 3 and Conclusion).

1.2 Outline of the approach

Recall that homeostasis means supporting of life functions of the cell (or another biological
system). It is well known that biological molecules and chemical mechanisms in the cell are
very fragile. Thus, in order to support their functioning, some main characteristics of the cell
(temperature, pressure, pH, reagent concentrations) must be within some narrow domain [17]
independently of external medium oscillations. For example, the temperature of a human body
must lie within 35 —42C°. Sharp changes in the external medium can lead to ”ecological catas-

trophes”. Therefore, it is important for investigation of biological, ecological (and economical)



systems to take into account different fluctuations because these systems can survive only when
their states stay within some bounded domains (we denote these domains by IT).

Basing on these ideas, we study some models important for biological, ecological and other
applications. These models contain a dynamical component and a stochastical part describing
a random environment. For such models a natural measure of the stochastical stability can
be introduced. This measure is a probability Pr(II) that for ¢ € [0,7] the system state (that
can evolve in time) stays in the domain II. This measure is well known and studied [33]. For
brevity, if the system state stays within II for ¢t € [0, 7], we say that our system survives on
[0, T]. For a system population ( a set of the systems) we shall say that this population survives
if at least one of these systems survives.

Besides this stability measure, in this paper the idea of a ” generic” system plays the key role.
The systems under consideration can depend on different parameters P. Following standard
ideas [10], we say that a property holds for a generic system if this property holds for an open
dense set in the space of possible values of the parameters P. In other words, this property
holds for almost all systems (see [11], where one can find details and an interesting discussion
of this topic).

For the models under consideration we show their instability if their parameters P are
fixed. More precisely, we show that the survival probability Pr(IT) — 0 as T'— oo for a generic
system. For some important particular class of the systems (genetic circuits), this property
holds for any circuits and the probability Pr(II) can be estimated.

The same result on stochastic instability holds for a finite population of systems S; with
parameters P;, which, in general, can be distinct but fixed in time. Then again we have
Pr(II) - 0 as T — oc.

The main idea is that a system evolution can stabilize system populations. If we consider
a set of unstable systems with parameters P;(¢), which can change from time to time, then the
limit of the survival probability Pr(I1) as T — oo may be different from 0. Briefly, a fixed
system is almost always unstable but a chain of evolving systems may be, in a sense, stable.

In the next part of the paper we investigate stable evolution algorithms such that lim Pp(IT) >
0 as T' — oo, when a chain of evolving unstable systems has non-zero chances to survive for
large times. In this part, our goal is to explain, with the help of this stability approach, the

main property of evolution (why a system must make its copies and the mutation probability is



small, why the genetic code size must increase during the evolution process (in average), why
the evolution tree must be, in a sense, large etc).

To proceed it, we introduce a concept of a priori computational complexity of evolution
problems. It allows us to apply some ideas and notions from complexity theory [43, 41, 44].
Indeed, it seems that many evolution problems are, in a certain sense, ”"complex”. Roughly
speaking, since ”almost all” systems are unstable, to construct a stable system is a ”complex”
problem. In fact, even for simplified models the evolution algorithm must resolve NP-hard
problems (about NP-hardness see books [43, 44]). We formulate some such problems.

We also find some interesting properties of evolution algorithms for genetic networks. This
question is connected with the graph evolution theory pioneered by Erdos and Rényi [12] since
circuits can be associated, in a natural way, with directed graphs. We show that the Erdos-
Rényi evolution is unstable.

This approach allows us to formulate mathematically some key biological questions. For
example, a very intriguing question, is whether evolution advanced step by step, or there
were great jumps. This problem has been considered in many books and papers, see [18]
and references in it. The answer, by our opinion, is connected with the following difficult
mathematical problem: for some NP-hard problems, whether there exists greedy algorithms,

which solve these problems for a certain subclass of instances.

2 Models

2.1 Stochastic differential equations.
A sufficiently general model for a dynamical evolution in random environment can be defined
by

dl‘i
dt :F(xla'“axnagla"'agm)a (21)

where x = (21,29, ...,x,) are unknown functions of time (giving system states), & are some

random processes with piecewise continuous trajectories describing fluctuations of an external
medium or an internal noise.

To simplify eq. (2.1), we can linearize at &; that gives us a model defined by the stochastic
differential equations

dx(t) = f(x)dt + ) g;(x)dw;, (2.2)

=1



where a function f(z) defines a non-random contribution into dynamics, g;(z) are functions
and w; can be independent white noises (standard Wiener processes). Eq. (2.2) presents the
classical physical model [15].

These models are too abstract and to obtain results that can be compared with experimental
data, we describe below an important particular model describing gene or neuron interactions.

2.2 Network models.

In last decade, large attention is given to problems of global organization, stability and evo-
lution of complex networks such as protein and gene networks, networks of metabolic reactions,
neural and economical circuits, Internet etc. (see [29, 30, 31], for a overview [14]).

The simplest mathematical model of such network is a (directed) graph. For example, for
a gene network we can associate with this network a graph where a node describes a gene, the
i-th node is connected with the j-th one if the corresponding genes interact. The evolution of
such graphs can be considered as an algorithm adding or removing edges and nodes. Stability
can be examined in different contexts. For example, we can examine how much edges (or nodes)
must be eliminated (in average) in order to destroy connectivity of the graph. In biological
applications, such an elimination may simulate mutations.

The first theory of graph evolution was proposed by Erdos and Rényi [12, 14]. They supposed
that, at time moments 0, 1,2, ..., one adds to graph a new edge with probability p. This theory
leads to a Gaussian distribution of C'(k) of the valency of a node. Recall that the valency of a
node is the number of the nodes adjacent to this node. The quantity C(k) is the probability
that a node has k adjacent nodes [14]. Recently it was investigated that real networks has
another structure, namely, so-called scale-free structure. Here C(k) ~ const k=7, where the
exponent 7y lies usually within (2,3). Such networks have few number of nodes with a great
valency, whereas the most of the nodes have a small valency.

Other interesting properties of graphs associated with actual biological, informational and
economical systems can be described as follows. The graph diameter is restricted (the diameter
is the maximal length of the shortest path connecting two nodes). The diameter defines the
speed of dynamical processes in the circuit, thus a small diameter is useful to survive in the ran-
dom environment. Moreover, studying of biological circuits showed that the averaged valency
(C) has increased during evolution. Here (C) can be computed by C(k): (C) = ¥, kC(k).

Another property found experimentally is that more connected proteins are more important



for organisms: letality correlates with valency.

Stability of the free-scale structures is high with respect to a random attack when one chooses
nodes to eliminate randomly. However, this stability is weak with respect to a terroristic attack
(when one eliminates the most connected nodes).

The first evolution algorithm leading to the scale-free organization was proposed by Albert-
Barabasi [14]. This algorithm uses the idea of so-called preferential attachment: the probability
that a new edge is incident to the :— th node is proportional to the valency of this node.

In this paper our attention is focused on stochastic stability of the networks with respect to
fluctuations describing an internal noise and oscillations of an environment. To achieve this goal
we have to extend simple graph models. In fact, metabolic reaction networks or gene networks
cannot be described completely as simple graphs. They define some complex dynamical system,
where a scheme of interaction of substrats,ferments or genes can be associated with a graph. A
part of the substrats enters this system from an external medium (input) and another part can
be considered as an output (products). It is well known that these systems succesfully support
an output independent of fluctuating input [19, 17].

It is difficult to describe in details global dynamical systems for metabolic reactions or gene
interactions. Genetic circuit models were proposed ( [20, 22, 24, 26] among many others, see
[23] for a overview) to take into account theoretical ideas and experimental information on
gene interactions. Model [22] uses Boolean algebra (so-called Boolean switch network). Models
24, 26] can be considered as a generalization of the famous Hopfield model of attractor neural
network [16]. To simplify situation, we focus our attention on this particular model, which is
based on two main ideas. The first one is to choose the gene concentrations as state variables
for the description of gene regulation. The second one is to take into account a pair interaction
betwenn genes, to describe activation or depression of one gene by another. We consider a

simplified variant of the equations [24, 25] ;where diffusion is removed, namely

dui
dt

j=1

where m is the number of genes included in the circuit, u;(t) the concentration of the i-th gene,
A\; the gene decay rates, the parameters 6; are activation thresholds, & (¢) describe random
fluctuations, and o is so-called sigmoidal function (see below). We assume that the &; are

random processes with piecewise continuous trajectories.



The real number K;; measures the influence of the j-th gene on the i-th one. The initial

data are
u;(0) = S; (2.4)
where S; are random numbers. The function ¢ is a strictly monotone increasing function
satisfying
Jim o(z)=0, limo(z)=1 (2.5)
Li-tanh(z)

The well known example is o(z) = Another important example of ¢ is given by

2
so-called Michaelis- Menten function. This function o equals /(K + ), where K is a positive
constant, for positive x and equals 0 for x < 0.

Model (2.3) takes into account only two fundamental processes: a) the decay (degradation)
of gene products (the term —\;u;); and b) gene regulation and synthesis.

Another possible model is a dynamical system with discrete time, for example, defined by

the following iterative process
UEH = Tia(z Kiju; +0; — ff) — Ay, (2.6)
j=1

0
%

where t = 0,1,2,...,T, T is an integer, {! are random functions of dicrete time ¢. Numerical
procedures solving (2.3) lead to models similar to (2.8).

In this paper we focus our attention to model (2.6) although many results can be extended
to case (2.3) (however here the proofs are more complicated). Systems (2.5) without stochastic
effects have been studied analytically in [45]. It was shown that they generate any spatio-

temporal patterns.

3 Main results
Let us formulate now main mathematical results. Their biological interpretation and compari-
son with experimental data is given in Conclusion.

3.1 Results for circuits

We consider the question on the stochastic stability of genetic circuits (2.5).



A For genetic circuits we obtain that the more is the valency of a node the stabler is the
circuit with respect to perturbations in this node. We also prove that the survival probability
of each circuit of a fixed structure tends to zero as T' — oco. Therefore, ”homeostasis” generated
by a fixed circuit will be broken as time tends to infinity.

B We show that although a fixed isolated circuit is always stochastically unstable (see
previous item), a chain of circuits could be stable. In this chain, each circuit is obtained from
the previous one by some algorithm modifying the circuit parameter (replication algorithm).
Roughly speaking, to survive, it is necessary to evolve, but in a special way. We investigate the
evolution algorithms leading to a stable ("eternal”) evolution when limy_ Pr(II) > 0. We
show that the mean valency must increase during such stable evolution. Moreover, we prove
that the Erdos- Rényi algorithm of graph evolution is unstable, i.e., limy_.., Pr = 0. Moreover,

we find a connection between evolution problems and some NP-complete problems for graphs.

3.2 Results for stochastical equations

C We show that ”generic” model (2.2) with fixed and smooth parameters g; are stochas-
tically unstable in a sense that Pr — 0 for 7 — oo. For model (2.1) with a polynomial
nonlinearity F' we find a connection between the stochastic instability and problems of real
algebraical geometry. In this case the evolution algorithm resolves certain problems of real al-
gebraic geometry. The known results [36, 35] allow us to estimate the running time of evolution
algorithms. This estimate is an upper estimate (possibly, there are more effective algorithms).

3.3 General properties of stable evolution algorithms

Under some natural assumptions (the parameter evolution is a Markov process, parameters
lie in a discrete set D and others) ) one can describe some general properties of stable evolution
processes. The most interesting property is the following. The evolution, to be stable, should
be close to a replication, and the size |D| of the set D ( ”genetic code” size) increases during
evolution.

The last property shows that it is natural to consider evolution as a Markov process with a
countable set of states, for instance, as a branching process associated with a tree. Using ideas
of the algorithm theory, we also give some estimates of this tree size. The tree must be big (if
P # NP).

3.4 Outline of the proofs

The proof of A, B and D is quite straightforward and uses some elementary probabilistic



and algorithmic arguments. The study of (2.1), (2.2) (result C) is based on the known results
for stochastical problems [33] and also use the known result of C. Lobry [9] on so-called poly-
dynamical systems. It is interesting to note that this result, in turn, is based on the Thom
transversality theorem [10].

3.5 Organization of the paper

We state the results A in Section 4. Section 5 concerns the stability of evolution algorithms.
For gene circuits, we deduce some estimates for survival probabilities Pr. Basing on these
estimates, we investigate stochastic stability of Erdos-Rényi algorithm. Here we also find a
connection of evolution problems with some NP-complete problems for graphs. In Section 6 we
consider stochastic differential equations (2.1) and (2.2) and show their stochastic instability
in generic situation. In Section 7 we investigate general properties of evolution algorithms.
Thanks to the concept of a priori computational complexity we obtain that the evolution tree
must be unboundedly increasing as T' — oc.

In conclusion we compare main results with biological experimental data. We show a good

accordance in many key points.

4 Stochastic Stability for Circuits

The important meaning has the problem of stability of networks under random perturbations
of different parameters. This problem attracts a great attention of biologists (see [29, 30, 31]).
We obtain some estimates on stability of (2.8) under noise leading to important biological
consequences.

Consider problem (2.8) with A\; = 0:

uf“ = O'(Z Kuug + Qz — fzt), (41)
j=1

where & are some random processes with the discrete time, S; are random numbers. We assume
that ¢! are independent for different i. Different choices of the distributions for &' and S; may
correspond to different ”ecological conditions”. The processes & simulate an internal noise
in the system whereas S; may simulate fluctuations of inputs. For example, if system (4.1)

describes a metabolic network, fluctuations of \S; are oscillations of nutrients and & can be

9



associated with oscillations of temperature, pressure or pH. Strong jumps of the value & for
the i-th node can be interpretated as "mutations” removing this node from a working circuit.

Let us introduce functions ¥; by
Prob{¢! < afor all t € [T1, Ty]} = Wi(a, Th, Tp). (4.3)
The following assumption plays an important role in what follows. Suppose
U,(a,T1,Ty) >0, Vi(a,T1,T5) — 0as Ty — o0 (4.4)

for any 77 and Ty such that Ty > T;. Roughly speaking, this means that &, can take any large
values with non-zero probabilities.

We say that a system (a circuit (4.1)) "survives” (supports homeostasis) if the concentrations
u; lie inside a closed domain II in the u -phase space. Notice that our conditions on o (see
(2.5)) entail u} € (0,1), ¢>0.

It is natural therefore to suppose that II is contained inside the cube [0, 1]™. As a measure

of the stochastic stability of the circuit homeostasis, we consider the probability
P(P,11,Ty,Ty) = Prob{u’ € 1 for each t € [T}, Ty}, (4.5)

where u* = (u},...,u! ). This probability depends on the circuit parameters P and the home-
ostasis domain II. We shall name it the survival probability on the time interval [T}, T3] and
denote by P(T},T,) omitting the dependence on the parameters P, II.

One can consider a more realistic and complex case when we deal with a family of different
perturbations depending on a random parameter w € €1y and for each w we have the corre-
sponding box I1,. Such situation is typical in biology: for example, if the environment contains
a lot of nutrient, genes connected with production of this nutrient may be blocked [17, 19].
However, to simplify estimates, we shall not consider this case here.

We estimate the stability via the following parameters: the valency, |K.|, the maximum b
of |6;] and some parameter Nj., that will be introduced below. It is important to take into
account the valency since it is well known that biological circuits are far from being completely
connected: for each fixed node ¢ we have a valency V; < m: only V; among the entries K;; are
not equal zero. In applications, typically, V; << m [14].

To define Ny, let us observe first that

inf u; =W, > 0. (4.6)

uell
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Denote U; = o~ }(W;). Some W; and U; could be positive. The corresponding indices iy, ..., i5 €
[1,...,m] will be named key indices and the corresponding genes will be named the key ones.
In fact, assumption W; > 0 means that the organism cannot survive if the concentration of ¢
-th gene is small enough. The number of the key genes is denoted by Ni.,. We denote by I the
set of the key indices corresponding to the key genes.

Let us fix some key index i € I and consider (4.1). We have the following simple inequality

ZKijU§+9i—§f <SS, =ViK.,+b—-¢&. (4.7)

j=1
Thus, if
&> VK, +b— U, (4.8)

t+1

the concentration ;" is less than the critical value W;. Moreover, if at least one u! is less than

W;, the state u’ is outside of this domain II. Hence, we have

Prob{ut € H, te [Tl + ]_,TQ]} S H\Ijz(‘/;K* + b— UZ‘,Tl,TQ — ]_) (49)
iel
Therefore, we have proved

Proposition 4.1. The survival probability satisfies

P(Ty,Ty) < [[W(ViK. +b— U, Ty — 1, T, — 1) = R(Ty, Ty). (4.10)

i€l
This estimate implies the following consequences. Notice that the function R is a monotone

increasing function of the valencies V;. Moreover, we notice that all circuits are stochastically

unstable as the time 7' goes to infinity. In fact, assumption (4.4) and estimate (4.9) imply
P00, T7) -0 asT — oc. (4.11)

Then there arises a natural question: how to stabilize the circuits. We shall consider this

problem in the coming section.

5 Evolution Stability for Circuits

5.1 General approach

11



In this section we show that a time evolution of the circuit parameters P can transform
stochastically unstable systems to the stable ones. The key question is about evolution prop-
erties providing the stability.

We consider circuits (4.1) under the assumptions of the previous section. We also suppose
that & are identical independent random processes, which are homogeneous in time. More
precisely, let us assume

Ui(a,T1,Ty) = Wi(a,0,Ty — Ty). (5.1)

Consider possible schemes of circuit evolution. They can be described as follows.

Each T, time steps we change the circuit parameters P following some rule. For example,
each T, time steps we can add to the network a new edge, and each T,, steps, we include a new
node (gene). Here T,, and T}, are some positive integers. We can also use more sophisticated
schemes. For example, one can add new nodes with many edges. In the case of graphs, different
schemes of graph evolution were studied in numerous works, see the overview [14].

Let us calculate the survival probability. Let P, = P(P,, [nT,,nT, +T,]) be the probability
to survive within the time interval [nT,., (n + 1)7,]. Here P, are the circuit parameters in this
time interval.

The probability to survive on the interval (0, 00) is then the infinite product

P(0,00) = PPy Ps... = H P,.
neN
Consequently, the quantity P(0,00) is non-zero if the series log P, 4+ log P + ... + log P, + ...
converges. We have obtained thus the following assertion.
Proposition 5.1. If the series
S log P(Py. [nT, (n + 1)T}) (5.2)

n=1
converges, the survival probability P(0,T) remains positive as T — oo. If this series diverges
to —oo, the survival probability tends to zero as time tends to infinity.

Propositions 4.1 and 5.1 yield a necessary condition for stochastic stability in infinite time.
Notice that it is more precisely to say about stochastic stability of the pair (circuit, evolution
algorithm) rather than about stochastic stability of just the circuits.

Proposition 5.2. Denote

Zp =S log U,(V' K, + b — Uy, nT,, (n + 1)T,)), (5.3)

iel
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where V;" are the valencies at the n-th renovation step. If the series Zy + Zy + ... + Z,, + ...
diverges, then the survival probability P(0,T) tends to zero as T — oo.

To prove it, let us notice that, due to Proposition 4.1, —log P(T}, 1) > — > ;c;log ¥, (Vi K+
b—U;, Ty —1,T5 — 1).

By these results we can analyze different evolution algorithms. Consider an example.

Example: Erdos - Rényi evolution.

Let us suppose that only a part of all the nodes are key ones. The simplest case is |I| =1
(I consists of a single node).

Let us consider a simple case when the number of the key nodes is constant during evo-
lution. Each new node is therefore not a key one. We can compare two case: Erdos -Rényi
evolution model, when a new node may be connected with any nodes with equal probability
and the Albert-Barabasi model (remind that the latter model uses the idea of the preferential
attachment: the probability that a new edge is incident to i-th node is proportional to the
valency of this node).

We consider first the classical model of graph evolution, Erdos - Rényi evolution. We
consider random graphs with N = m nodes and M edges, and we will study the asymptotics as
N — oo. We suppose that these M edges are chosen at random among the Ey = (];/ ) possible
edges so that all Ey possible choices are equiprobable.

An evolutionary equivalent formulation is the following: let us suppose N labelled points p;
(nodes) are given. Let us choose randomly an edge among the Ey possible edges, after this an
edge among the £y — 1 remaining edges etc., and so on, in all we make M choices.

With considered graphs we associate dynamical circuits (4.1) setting K;; = 1 if the i-th and
j-th nodes are connected and K;; = 0 otherwise. Let us estimate the probability P(0, M, N)
to survive within M steps for large M, N. Suppose the marked key node is the 1-th node.
We will write, for brevity, ¥y(a,T,T + 1) = ¥(a), since this function is indepedent of T (see
assumption (5.1)). Furthemore, let V1, V2 ... VM be valencies of this key node at the first,
second, ... M-th step of evolution, respectively. It is clear that V! < V2., < VM je., the
sequence V" is increasing.

Repeating the arguments of this section, we obtain, due to this mononicity, the estimate
P(0,M,N) < E,,,¥(VHw(V?)..¥(V") < E,, Y (V)" = E, ;¥ (V)M (5.4)
where E,, , means the mathematical expectation over all sequencies of random graphs, E, 4

13



is the expectation over all random graphs with Fxy nodes and M edges. Denote by p, the
probability that such a random graph has exactly £ nodes adjacent to the first node. Repeating

the estimates of Erdos-Rényi ([12], see as well [13]), we can deduce the estimate

< ()50

Then inequality (5.4) can be rewritten as

P(0, M, N) Z oV (k jzf:(k!)l(%)’qu(kw. (5.4a)

Let us formulate now an assertion.

Proposition 5.2 Suppose M < CyN, where Cy is a constant. Then P(0,M,N) — 0 as
N — o0, i.e., the Erdos-Rényi algorithm is unstable.

To prove this assertion, let us take a small € > 0. Suppose M — oo as N — oo (for bounded
M and N — oo, our assertion is a trivial consequence of (5.4a)). Notice that W(k) < 1.

Therefore, for any integer n € [0, M] one has

P(0,M,N) < znj(k!)*l(cco)kqf(k)%r fj (K1)~ (cCy)F.

The second sum can be made less than €¢/2 by a choice of a large n = n(€). Let us choose such
n and fix it. Suppose M tends to co. Then the first sum converges to zero, since ¥(n)¥ — 0
for fixed n. So, for large N we have P(0, M, N) < € and our assertion is proved.

If the key nodes at initial moment have essentially more adjacent nodes than the rest nodes,
then it is clear that the Albert-Barabasi algorithm gives to the circuits essentially more chances
to survive than the Erdos-Rényi one. Indeed, the preferential attachment algorithm produces
a graph, where the valency of key nodes will be much more than for a graph generated by the

Erdos-Rényi algorithm.

5.2 Evolution as a computational problem. Relation to some NP-complete prob-
lems

In the previous subsection we have explained that a realistic model of circuit evolution must
use a nontrivial algorithm, of Albert-Barabasi type, or even more complex. Let us consider
now some restrictions to possible connections in graph K taking into account a real structure

of biological molecules.
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Above, analyzing different approaches, we have supposed that during evolution process any
two nodes could be connected. This could give an impression that network evolution is an easy
process. Actually, however, this evolution cannot be such a simple process, and we shall see it
in this subsection.

Biomolecules consist of numerous polymer groups, and in a chemical reaction, they loose (or
accumalate) only one such group. This explains, in particular, why enzyme reactions proceed
in many steps (see [19]). We conclude therefore that if our graph describes, for example, a
scheme of metabolic reactions, then it is impossible, in general, to connect two arbitrary nodes.
An analogous picture can be observed for other real graphs. Consider, for instance, a graph
describing coauthors. One can expect, a priori, the probability that a specialist in physics will
write together with a specialist in abstract algebra is essentially less than the probability of
cooperation for two physicists.

To take into account possible natural restrictions on the matrix K fixed a priori, we can
introduce a large graph (V, E'), where V' is a set of nodes, E is a set of edges.

With each v; € V' we can associate a chemical reagent u;. The entry K;; in (4.1) could be
non-zero only if it prescribed by E, i.e., when v;, v; a priori can be connected (v;,v; € E).

Now an evolution can be formally described as a time change of subgraphs (V, DY), D' C E,
where t = 0,1,,2,... and D° ¢ D' C D?..... To obtain in such a way a complicated chemical
reaction transforming a substrat s € V to a product p € V', we must therefore find a simple
path in (V, E) leading from s to p.

It is clear as well that the length of this way may be large, but a priori restricted by a
number L,,,.. Otherwise, the relaxation processes will be very long and such a system could
not survive.

Let us recall our main principle, namely, that the system must be stable in stochastical
environment. This implies, in particular, that the system should be stable with respect to mu-
tations or random vanishing of some substrats needed for producing the product p. Mutations
can lead to elimination of some nodes or edges (see above beginning of Section 2).

To provide such stability, evolution should form more than one way from different nutrients
to products. The more different ways we have, the stabler is our system. Thus, we obtain the
following problem:

Problem 5.1 Given a graph G = (V, E), collection of disjoint node pairs (s, 81), ..., (Sk, Sk)-
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Does GG contain J or more mutually pairwise node-disjoint simple paths connecting s; and 5;
for each i =1, ..., k7.

This problem is NP-complete (see [43]). The given nodes s; could correspond to nutri-
ents (substrates), nodes 5; could correspond to products, the paths correspond then to some
metabolic paths. Suppose that a system, defined by the graph, survives if the environment
contains at least one type of nutrients s;. The random fluctuations are eliminations of some
nutrients.

There are possible different models of such fluctuations and their action on the system. We
shall distinguish two cases: hard environments and soft ones.

Example. Suppose each nutrient s; can vanish independently with a probability r;. The
system will be destroyed if all possible nutrients are absent. Then, if k paths have been found,
the probability to survive (per unit time) becomes f(k) =1 — rirq...7.

We say that an environment is hard, if the function f(k) (the probability to survive per

unit time after a solution of k-th problem) admits, for large k, the following estimate:
f(k) <1—=0k7", (5.5)

for some p > 0, where 6 > 0. Otherwise, the environment is soft. For the problem 5.1 the
evolution algorithm is a finding of different paths. Problem 5.1 gives rise to a natural hierarchy
of the computational problems (one path is found, two paths are found, ... k paths are found).

Another natural NP-hard problem related to the stability can be formulated as follows:

Problem 5.2 Given a graph (V, E), positive integers K < |V| and B < |E|, is there a
subset £/ C E with |E'| < B such that the graph (V, E') is K -connected, i.e. cannot be
disconnected by removing fewer than K nodes?

This problem is simple for X = 1 but it is NP-hard for K > 2. In the next subsection
we shall see that existence of such problems yields interesting consequences for the evolution
process. Notice that a number of NP -hard problems can be associated with the models from

Sections 4 and 5. We do not formulate them here. An example is given in Section 7.

6 Instability for stochastic equations

6.1 Smooth generic systems
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We consider here the case [ = 2 and simplifying notation, we denote g; = g, go = h. The
case [ > 2 can be considered analogously. For [ = 1 the results below are invalid.

We shall write eq. (2.2) in the following form

W0 — fa) + 9@ 0) + h@)ealt).  2(0) = 2", (6)
where ©z € R", &, &, are random processes with continuous trajectories. Conditions on &; will
be formulated below.

We associate with (6.1) the so-called polydynamical system (g, h) [9] generated by vector
fields g and h. An orbit of this polydynamical system can be obtained as follows: first, for
t € [0,t;] we move along an orbit generated by the field g(x), then for ¢ € [t1, t5] along an orbit
generated by the field h(x) etc.

Consider all orbits of this polydynamical system starting from a point xy. Let U be an open
bounded neighborhood of this point in R".

Lemma 6.1.Suppose s > n*+n. The following property of the polydynamical system (g, h)
associated with (6.1) is "generic” for smooth fields g and h, i.e., it holds for an open dense
set of C*- fields g, h (where the set of all vector fields is endowed with the standard Whitney
topology, see [10]).

For all x1 € U there exists an orbit of the polydynamical system connecting xo and x.

This assertion actually is a particular case of the known theorem obtained by C. Lobry [9]
for polydynamical systems on manifolds by R. Thom’s theorem on transversality.

Using this result we prove, under some conditions, that a 'generic” system (6.1) is stochasti-

cally unstable. Suppose the set II that defines stochastic stability enjoys the following property:

diamIl <r, 1> 0. (6.2)

This yields that the complementary set R™ — II contains a ball B of a diameter d > 0.
Suppose the processes &; satisfy the following condition. Let us introduce the distance

between trajectories defined on [0, ¢] by the L,- norm
sty (€0),€0)10) = ([ [els) = E()Pas)?, p=1. (63
Denote by Us,, ¢ the tubular neighborhood of a trajectory £(t), t € [0, ¢o]:
Use = {n(t) - t € [0, o], disty(n, &, t0) < 0}
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Let us formulate now an important assumption on the random processes &(t).
Assumption 6.1 Suppose for each pair of piecewise constant trajectories ny(t), n2(t), where
t € [0,Ty], and for any 6, Ty > O there holds

Prob{(£1(t), &2(t)) € Usyy X Usmy ¢ € [0, To]} > 0. (6.4)

Using the known results [34] one can show that Assumption 6.1 holds for large classes of
Markov random processes, for example, when &; are independent brownian motions. To show
this last fact, we can approximate & in the supremum norm by step functions. For each ¢
and each step the neighborhoods ,, can be replaced by more narrow neighborhoods V;, =
{z(t),t € [t+kh,t+ (k+1)R], |z —ax| <k}, where a; are constants, k =1,2,..N, hN =T,
k = k(d) is a small positive number. The probability that &;(¢) remain in all the Vy is positive
(this follows from [34], Chapter VI).

Proposition 6.2

Suppose g,h € C",r > 1. Under Assumptions 6.1, and (6.2) generic system (6.1) is
unstable, i.e., the survival probability Pr(I1) converges to 0 as T — oo uniformly in initial data
20 e I

Proof.

Step 1 By Lemma 6.1 we can find & (¢), &2(¢), t € [0, Tp] such that a trajectory z(t) generated
by the system

B g + e, (6.10)

goes from any start point xy and enters B/, where B; is an open ball contained in the

complement R"™ — IT of II.

Let a be a large positive number. Then the functions & = a&;(at) on [0, a~'T}] also generate
a trajectory Z(t) of (6.1a) that attains the ball By, within the time interval [0,aTp). Let us
consider now the differential equation

dx_

i f(@) + g(@)&u(t) + h(x)&a(t), te€[0,a Ty (6.5)

and the difference w = Z(t) — x(t). For this difference we have

%’ = f(@(1)) + & ()G (@ ()w + &) H (Z2(1))w, (6.6)
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where G(z), H(z) are linear operators with uniformly bounded norms ||G||, ||H|| < Cy and a
positive constant Cj is independent of a. Here z;(t) are points within the interval [z(t), Z(¢)].
We have w(0) = 0 (the starting points for both trajectories x and Z are the same). Thus, since
|f| < Ci, we obtain t

lw(t)] < /0 (C1 + Coalw(r)|)dr. (6.7)

Using the Gronwall inequality we find
lw(t)] < Citexp(Coat), (6.8)

where C; are uniform in a as a — oo. Thus, if a is large enough w(a™'Tp) is less than d/4. .
This entails that the trajectory x(t) enters the ball By at the time moment a~'Tj.

Step 2 The probability of realization of the single trajectory & (1), 52(15) may be zero, however,
repeating similar estimates, one can show that all the trajectories from the set Us ¢, xUs¢, attain
B, if § is small.

In fact, let us consider equation (6.5) and the same equation with other & = & € U(&y, &, 9)

dz _ _
— = 1@ +9(@D)a ) + h2)&(t), ¢ e[0T (6.50)
where § is a small positive constant. Denote v = x — z. Proceeding as above (Step 1) for w, we
obtain a differential equation for this difference v and, by integrating, we arrive at the integral
inequality
t
p)] < [ (Cop(r) + Coau(r))dr. (6.70)

where p(t) = |&(t) — & (t)] + |€1(t) — &(t)]. By the definition of the neighborhood 2, the
integral of the function p over [0, a=Ty] is less than 6. Therefore, we can again use the Gronwall
inequality that gives, by (6.7b), [v(a™'Tp)| < C4d < d/8 for sufficiently small 4.

Therefore, the probability to enter the ball B; within the time interval [0, Tp] is positive.
This implies that Pr — 0 as T' — oo. Indeed, due to assumption 6.2, we can suppose that II is
closed and bounded, therefore, it is a compact. The estimate Pr,(zg) < 1 — 07, where §; > 0, is
uniform in zg € I, where x is a starting point for (6.1). Let us estimate Pyr,. This probability
is less than (maxPr,)? < (1 — §;)?. Repeating this by induction, P,z — 0 as n — oo and the

proposition is proved.

Remark. This proposition can be considered as a mathematical formulation of the assertion

of M. Gromov and A. Carbone [32] on the homeostasis instability (cf. above the introduction).
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7 Almost all” systems (2.2) are unstable, i.e., they are not possible to support homeostasis

eternelly. Similar results hold for equations (2.8).

6.1 Polynomial dynamical systems

The polynomial and rational dynamical systems are more natural for biological applications.
It is difficult, however, to demonstrate an analogue of Prop. 6.1 for "generic” polynomial
dynamical systems. Moreover, we have different notions of genericity (see a discussion in [11]).
For our goals will be more useful the concept of the metrical genericity, when ”almost all”
means ” all besides a set of zero measure”.

To overcome these difficulties, we consider admissible domains I, which, in a sense, are
narrow. From biological point of view, it can be explained by fragility of biological systems.
We suppose that there always exists a direction such that acting in this direction can destroy
our system. To formalize this idea, we introduce the following class of domains II.

Definition. We say that a set I C R" is d-narrow at the point xy, where § > 0, if there
exists a unit vector e such that the ray x1 = xo + Te, 7 >0, lies outside 1I.

The supremum over all the points zy of the infimum of ¢ satisfying this definition can be
named the width of the set II. The width determines the maximal radius of inscribed balls.

The d-narrow at xg set can be large in some directions, but it should be sufficiently narrow
at least in one direction defined by the vector e.

If IT is d-narrow at some xy with a 0 small enough, then analysis of stochastical stability
reduces to some complicated polynomial equations. We are going to use the following known
results of geometric control theory.

Lemma 6.3 (Kalman criterium of controllability).

Consider the linear system

Z—f — Az+ BE(t), 2(0) =0, (6.10)

where x € R", A is a n x n matriz, B is a vector € R" and £(t),t € [0,T] is a control. Then
the system (6.10) is controllable, i.e., for each 1 there exists a £(-) such that the corresponding

tragectory of (6.10) attains x1 if and only if the following condition holds:

dim Span{B,AB,A’B, ..., A" 'B} =n (6.11)
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Consider now a system (2.1) with a polynomial right hand side F. To simplify situation
we suppose that m = 1, i.e., we have only one fluctuating parameter &; = £. We investigate a
stability at an equalibria of a non-perturbed system, i.e., we suppose that for & = 0 there exists
a point xy such that F(z(,0) = 0. We can suppose, without loss of generality, that zy = 0.
Linearizing eq. (2.1) at 0 we obtain the system (6.10) with A = DF(0,0), B = %—?(O, 0).

Proposition 6.4. IfII is §-narrow at xy = 0 with a sufficiently small & then system (2.1)
15 stochastically stable only if

F
dimSpan{B, AB, A*B, ..., A"B} <n, A= DF(0,0), B= aa_g(o’ 0). (6.12)

Proof. Consider any z; such that |z;| = 2§ amd z; ¢ II. According to the Kalman
criterium, there exists a control (t), t € [0, Tp] such that the corresponding trajectory of linear
system (6.10) attains the point 6 'xy. It is clear that £(¢) is independent of §, therefore |¢] < C
where C' is uniform in §. Then the control d£(t) gives a trajectory of (6.10) that attains the
point x.

Consider the same control 0¢ for the original system (2.1). For small 6 by an estimate
analogous to estimates from proof of Prop. 6.2, we can show that the corresponding trajectory
of nonlinear system (2.1) leaves d-neighborhood of 0. This proves our assertion.

This assertion shows that the analysis of stochastical stability of equilibria reduces to solu-

tion of the complicated system of polynomial equations:
dim Span{B,AB, A’B, ..., A"B} <n, F(x,0)=0

A(x) = DF(z,0), B(z) = —=(«,0). (6.13)

In general, this system is overdetermined and one can expect that generically this system has

no solutions and thus equilibrium states of (2.1) are stochastically unstable.

7 Stability of evolving systems. (General approach

The main idea is based on the following observation: Lemma 6.1 of the previous section does

not hold if system (2.2) contains internal parameters. In fact, let us consider (6.1) with f, g
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and h depending on some parameters y € R". ”Generic” symmetric control systems defined

by g, h are not completely controllable since now for some y the system

g(r,y) = h(z,y) =0 (7.1)

can, even in a generic case, have a solution x. Similarly, for polynomial dynamical systems

(2.1) with F' = F(z,y,&) we seek for y such that the system

dimSpan{B, AB, A*B, ..., A"B} <n, F(x,y,0)=0,

A(x) = DF(x,0), B(x) = %—?(z,y,é)!gzo (7.2)
is resolvable. We suppose that coefficients of polynomials involved in relations (7.2) lie in hZ,
where h is a rational positive number.

This problem is well known in real algebraic geometry and named ”elimination of quanti-
fiers” (see [35]). Effective algorithms for this problem were found by D. Grigoriev et al. [36],
another method was proposed by M. F. Roy et al. (see book [35]). The known algorithms take

an exponential number Ng of steps
N = (dn)°™, (7.3)

where d is the maximal degree of polynomials A, B, F' in x and y. Notice that, in general, the
problems of quantifier elimination or even of solvability of polynomial systems are NP-hard
[43].

Let us study now some mathematical models of internal parameter evolution. First we
consider the case when our family of evolving systems consists of N members defined by the
parameters vy, ..., yp € M, where the set of possible values of the parameter M is finite or
countable: |[M| = M. We suppose that the evolution process is a Markov process with discrete

time t = 0,1, 2, .... The case of continuous time can be considered in an analogous way.

7.1 Optimal structure of a Markov evolution for finite M
Denote p;(t) the probability to be in the state y; at the moment ¢. Then the time evolution
of p;(t) is subject to the equation

pi(t+1) = Z w;;p;i(t), (7.4)
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where w;; is the transition probability from y; to y;. To describe destruction of the states y;
under a fixed external perturbation, we introduce an absorbing state 0 (the system is destroyed)
and the corresponding probability transitions ¢; = wg; > 0 and w;p = 0 (the last relations
expresses the fact that we cannot return to y; from 0). We assume that ¢; are small with

respect to min{w;; > 0}. Entries v;; are small pertubations of w;; such that

M
Zvji =q, |vjl,lal <e (7.5)

where € > 0 is a small parameter. This means that the environment weakly influences, by V,
on the coefficients w;; describing ”an internal dynamics” of the system given by (7.4).

Then the complete evolution system consists of the modified eq. (7.4)

M
pi(t+1) = (wij — vi;)p;(t), (7.4a)
7j=1
plus the equation
M
o(t +1) Zq]p] + po(t), (7.6)

determining a Markov evolution with M + 1 states. System (7.4a), (7.6) can be asymptotically
resolved for small € by the standard methods. We denote by m; an equilibrium state of (7.4)

defined as a positive solution of the eigenvalue problem
M
)\7'('Z = Z Wi T4 (77)
j=1

with A = 1. Using the algebraic theory of Markov chains [28] and an elementary theory of

perturbations, we obtain

pi(t) = C(p(0))(\B +o0(1)), €—0, (7.8)

for large t, where the constant C' depends on the initial data and A\, =1 -3, [ = Zf\il Tiq;-
The correction 3 describes a small change of the principal eigenvalue A = 1 of (7.7) under the

small perturbation V. Substituting result (7.8) in (7.6), we have

po(t) = C(1 =) (1+0(1)), €—0. (7.9)
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Given ¢;, we seek an ”optimal” process ( an optimal choice of w;;) that minimizes po(t) (the
probability to be destroyed). It is easy to show that this optimum problem is independent of a

1

concrete value t for large ¢t > €~ and reduces to a minimization of 3. For this optimal process

we have

N
Zﬂ'l'qi = mz’n, Zﬂ'i = 1, T 2 0. (710)
=1 =1

Suppose ¢; are different (that is a ”generic” case). It is not difficult to see that the solution
can be described as follows. Suppose i is an index corresponding to the minimal ¢;. Then we
conclude that the optimal distribution 7; is concentrated at i¢p: m = 0;,;,. This means that
under a fized random perturbation evolution must be selective, i.e., evolution seeks for a state
y; that gives the maximal survival probability. These facts can be summarized by
Proposition 7.1. Under above assumptions, the process (7.4a)-(7.5) providing a mazimal

survival probability for each T has the following structure: there is an index ig such that

The first relation means that the system is in an “optimal” state. The second relation means
that the process makes copies of an “optimal” state.

Let us consider now a more complicated case, namely, when there are possible different
perturbations leading to destruction of states and it impossible to foresee which from them
acts. This means that the random environment, in a sense, is nonpredictable.

To describe this situation, we use the following notation. Let w € {2y be a random parameter
that defines a choice of a random external perturbation. The quantities ¢; depend on w:
¢; = ¢;(w). The optimal structure of the process can be found now as a solution of the following

minimax problem: to find 7; minimizing

M
max » mg(w), > m=1 m>0. (7.10)
weslo ;7 i—1

In this case, in general, equilibrium state probabilities m; are localized at some different points.
We conclude thus that in a non-predictable random enviroment the evolution must be more
random than in a predictable one.

Let us show that genetic evolution actually posesses similar properties. We remind the

classical model proposed by R. Fisher [38, 39]. Assume the genetic structure of the population
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consists of m alleles y; ( different variations of the same gene). The population size is X(t).
The probability that a member of the population has the j-th allel, is p;. According to R.
Fisher, time evolution of these allel frequencies is defined by the equations
dpi _ OW(p)
dt op;
where p = (p1,p2, ..., pm) is the vector of the allel frequencies, W is the so-called fitness of the

+ £(X, p)Gi(t) (7.11)

population, ¢; are white noises and x ~ X /2.
The term with &; describes random contributions to gene dynamics ( the genetic drift). We
add to (7.11) the classical equation for the population dynamics:
dX
dt

where 7 is a coefficient determining the rate of the population growth, K is the so-called

CX(K - X), (7.12)

capacity, i.e., a maximal population size that can be attained in a given ecological environment
(due to a simple fact that resources are restricted). Coefficients r, K can depend on p;.

In a stable environment, without any ecological catastrophes, the population size X is large
enough and the terms with x are small. If we set kK = 0, i.e. we remove the noises, we observe
that the complete population fitness W (p) grows with time ¢: dW/dt > 0 on the trajectories
(7.11) (Fisher’s theorem, [38, 39]). This means that the complete fitness increases during
evolution. The term with the gradient of W describes a natural selection, when evolution seeks
for p; with the maximal fitness W (p) .

Let us consider an ecological catastrophe. Here we dealing with unpredictable perturbations
(see above, eq. (7.10)), since the population, at the moment of this catastrophe, cannot foresee
the type of environment after catastrophe. Thus evolution must be random.

Let us show now that, in this situation, system (7.11), (7.12) proceeds a more random
evolution. We can suppose that an ecological catastrophe leads to a strong sudden fall of the
value of K. Then X falls as well and therefore the terms ¢&; could become much more essential
than VW | i.e., equations (7.11) describe a random search.

To conclude this subsection, let us notice that if all ¢; > 0, then for a fixed M the probability
Pr to survive during time interval [0, 7] converges to zero as T' — oo. (It follows from relation
(7.8)).

Therefore, to survive we should increase M from time to time introducing new states. In

this case we obtain a Markov chain with an infinite number of states plus a marked state 0.
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Then it is well known that the probability to be absorbed by 0 may be < 1 [28]. This means a
possibility of a stable evolution for large times. To describe a more complicated situation with

M = oo, we consider a particular case: branching processes.

7.2 Evolution for countable state sets: branching processes, algorithms, NP-
hardness and evolution properties

We suppose here, that, at each time moment ¢, the state y may proceed to new states
T/ y;(tyy). The number n of new potentially possible states is finite but it may depend on the
moment of time and the previous states. We can imagine an evolution ”tree” growing in time,
where, at each node, we can go to any branch describing a new state. During this motion, a
perturbation can destroy old states.

We state the following problem: how to estimate the size of the evolution tree providing a
stable evolution, when the survival probability limit Pr stays greater than a positive constant?
(i.e., the limit relation Pr — 0 as T' — oo does not hold). Our goal is to explain increasing of
evolution tree and genetic code with time growing. The main idea is to connect this problem
with the theory of algorithmic complexity. To create a system making a stable homeostasis, is
a complex problem (see above, Sections 5, 6).

To formalize more the problem and to apply to it the theory of algorithms, we assume the
following. Let us suppose that each state y is defined by a code Cy. To simplify, we consider
the problem with discrete time: ¢t = 0, 7, 27, ..., where 7 is a time step. At each instant of time,
we transform this code to another code.

We suppose as well that the survival problem has some ”a priori computational complexity”
Comp,. Let us observe that there exists a tradeoff between a memory Mem needed to perform
an algorithm and the number of steps Ny, of this algorithm. For certain problems there was

obtained the estimate (first it was obtained in [41], see book [37] for a review):
Mem - Nijme > Comp,. (7.13)

We can illustrate this fundamental relation by an example, namely, by the famous salesman
problem. Let us consider n cities located in a country. Distances between cities are given. The
problem is to find a tour running all n cities (each city once) and having the minimal length.
Here the algorithm of the exaustive search has an exponential time cost Ny = O(ne)™ but it

uses the memory O(n). On the other hand, if we use a memory 2", we can solve the salesman
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problem in O(n) steps (see [44]).

Remark: It is important to note that if P # N P and, for a NP-complete problem the Ny,
depends polynomially on the input size |C| (the code size), and Compaprior; is not polynomial
in |C|, then the memory size should be non-polynomial in |C].

Furthermore, we suppose that the evolution solves a chain of computational problems to
survive. Namely, we deal with problems Pry,...Prg, ... of increasing a priori complexities
Comp,(1), Compa(2),..., Comp,(k),.... Each solution of each problem is defined by some
codes corresponding to our states.

Let us formulate an important assumption.

Assumption 7.1 At the moment t, all states with the code C, can be destroyed simul-
taneously by the random environment within time interval [t,t + 1] with the probability Q(y)
independent of t (thus we suppose that the random processes are homogeneous in time).

Example. Let us turn to the model from Problem 5.1 in Section 5. Recall that given nodes
s; could correspond to nutrients (substrates), given nodes §; could correspond to products, the
unknown paths correspond then to some metabolic paths. For this model the problem Pry, is to
find £ mutually disjoint paths from s; to §;, i.e., from subtrats to products. Under assumptions
from Section 5, one has Q(y) = rra...7k.

We suppose, moreover, that if the corresponding code C, is a solution of the problem Pry,
then the probability Q(y) satisfies

Qly) >1—f(k) >0, (7.14)

where f(k) > 0 is a function of the integer argument k. This means that, at each step, there
is a uniform low bound for the destruction probability (depending on the step number).

By solving the chain of the computational problems the population increases the survival
probability. The chances to survive depend on the evolution algorithm speed and on the
environment properties.

Let us introduce the quantity Se,(k), which is the number of the states (the nodes of the
evolution tree ) with pairwise different codes obtained to this moment, when k-th computational
problem is resolved. Notice that only different codes are essential for evolution, it follows
from Assumption 7.1. Moreover, let us observe the inequality S.,(k) < max|C(y)|, where the
maximum is taken over all states at the k-th step. Therefore, if the tree is large, the code

length also is large.
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Proposition 7.2 Suppose that the evolution is stable, i.e., Pr — ps > 0 as T — o0.
Assume that the evolution solves a sequence of computational problems (as described above)
such that their a priori complezities Comp,(k) increase faster in k than any polynomial ko)
and that for these problems the estimate (7.13) holds. Assume that the population is in an hard

environment, i.e., relation (5.5) holds
Fk) <1—06k™" & pu>0. (7.15)

Then, if P # NP, the code size |C(y)| and the evolution tree size Se,(k) tend to oo as k — oo.

Proof. Suppose that |C(y)| are bounded for all k. Then the quantities S,,(k) are bounded
as well (see above). Our plan is to find an estimate of the running time 7}.,,,(k) = 7% at k-th step
of evolution, when k& — 1 problems have been resolved. Due to Assumption 1, the probability
qx that all members of the population with S, (k) members will be destroyed within the time
interval 7, can be computed in an elementary way. We observe that the probability of survival

of a population member is 1 — (1 — Q(y))}. Thus
g = (1= (1= (1= Q(y)p)*®
and, by inequality (7.14), this quantity satisfies
> (1= (R

Thus the probability p; that at least one member of the population survives satisfies
Poo < Pp <1—(1— f(k)rk)sev(k)'

This gives
a=—10g(1l — px) < Sev(k)(—log(l — f(k)™))

and
«Q

(—log(1 — f(k1)™))
for any ky € {1,2, ..., k}. Let us take a sufficiently large ~ such that v > p+2, where p is taken
from (7.15). For times 7y, 72, ... we have (if P # NP and (7.13) holds)

Sev(kl) >

(7.16)

T+ T+ ..+ T >k, y=7-1,
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since the sum in the left hand side is the complete running time for & -th problem with memory

O(k). Therefore, there exists an integer k,,0 < k, < k such that
Th, > Gk (7.17)

Let us substitute this k. in inequality (7.16). We observe then that f,** < 1/2 for k large
enough and, since —log(1 — x) < 2z for x € (0,1/2), this implies

Seo(ky) > %f(kz*)‘ﬂf* = h(k,). (7.18)
From (7.15) it follows that f(k,) <1 — 0k, " <1 — 0k™*. Therefore,

h(k,) > %(1 k)

Using (7.17) we notice that h — oo as k — oo. We have obtained a contradiction with our
hypothesis that |C(y)| (and thus S, (k)) are uniformly bounded in k. The proposition is proved.

Remark 1. The main idea is as follows: an algorithm resolving a complicated evolution
problem uses a tradeoff between running time and memory, see (7.13), since the time to create
a stable structure is restricted.

Remark 2. Many NP-hard problems such as k-SAT [43] or certain graph problems can be
resolved, under some conditions, for "almost all” instances, by effective greedy algorithms. In
this case the evolution problems can be resolved fast and without big trees since then 7, < const.

Consider an example. Let us look at Problem 5.1. To find a simple path from node s; to
node t;, we can use, for example, the Dijkstra algorithm, which is greedy [40]. The running
time is O(|V]log|V]) for graphs with a bounded averaged valency. If we have k — 1 simple
ways from s; to t;, 1 = 1,...k — 1, we can remove edges and nodes involved in these ways and
again seek for a way from s to tx. Then 7, = O(|V|log|V'|) and it is independent of k. It is
clear, however, that such an approach does not work for arbitrary graphs, since this way could
be absent. However, one can expect this approach to be successful for almost all graphs (with

respect to an appropriate measure) with sufficiently large averaged valency.
8 Conclusion: biological interpretations of results and
connections with experiments

Results on circuit model (2.7) are consistent with experimental data. First we summarize our

results for the gene circuits. We have obtained that
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C1. The sharper is the sigmoidal function o, the larger is the survival probability; it is
consistent with general ideas on enzyme dynamics [19].

C2. The more is the valency of a node the stabler is the circuit with respect to perturba-
tions in this node. This conclusion is in an accordance with experimental results of the work
[30]. They show that the most connected proteins in the cell are the most important for its
survival.

C3. Investigating evolution process we have found that the averaged valency should in-
crease. This conclusion also is confirmed by experimental data (see [29]). Notice as well that
for graphs with a larger averaged valency it is simpler (with a larger probability to find a
solution) to resolve NP-hard problems having biological meaning and mentioned in Section 5.2.

Moreover, it is shown (see Example 2, Section) that the preferential attachment evolution
algorithm is stabler than the Erdos -Rényi algorithm. This means that the principle of stochastic
stability in a random environment explains why biological networks have free-scale structure and
why Erdos-Rényi structure is unstable. Evolution algorithms have to use variants of preferential
attachment.

Let us state now a summary of the results for more general systems (2.1), (2.2). We
show that a ”generic system” is unstable under random perturbations. This property leads to
important consequences.

G1. The averaged time of species existence may be large but it is bounded. The species
living in a stabler environment should have, in average, a larger existence time than the species
living in an unstable environment.

G2. If our random environment is, in a sense, predictable, i.e., this environment generates
a stationary noise with parameters that rest the same during a very large time period, then an
optimal evolution algorithm should be more ”selective”, i.e., this algorithm should seek for an
optimal genetic structure.

In opposite, if the environment is non-predictable, i.e., there are possible ecological catas-
trophes that sharply change the environment from time to time, then the evolution algorithm
should be more randomized.

The next conclusion follows from the complexity theory of algorithms (section 7).

G3. If the evolution solves a problem that can be interpreted as a hard computational

problem, then the evolution tree must be very large: evolution, to be stable under pertur-
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bations, should produce many different new states. It is clear as well that the evolution,
in a medium with restricted resources, should use the death in order to be successful: old copies
must be eliminated.

One can assume that, at initial studies of evolution, primitive beings living in a hard envi-
ronment have used this strategy of fast reproduction to survive (so-called r-strategy, see [7]).
Our hypothesis is that the evolution has invented effective greedy algorithms corresponding K
-strategy (when replication produces a small number of well adapted beings, [7]).

To conclude, let us notice that, of course, the models studied here are strongly simplified.
For example, we have assumed that the environment does not depend on the population state,
i.e., there is no feedback between evolving systems and environment. Really, it is clear that

this assumption is not quite correct and can be considered only as a first approximation.
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