VANISHING THEOREM FOR TAME HARMONIC BUNDLES
VIA [2-COHOMOLOGY

YA DENG AND FENG HAO

ABSTRACT. Using L*-methods, we prove a vanishing theorem for tame harmonic bundles
over quasi-Kahler manifolds in a very general setting. As a special case, we give a completely
new proof of the Kodaira type vanishing theorems for Higgs bundles due to Arapura and
for parabolic Higgs bundles by Arapura, Li and the second named author. To prove our
vanishing theorem, we construct a fine resolution of the Dolbeault complex for tame har-
monic bundles via the complex of sheaves of L2-forms, and we establish the Hérmander
L*-estimate and solve (Jg + 0)-equations for the Higgs bundle (E, 6).
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0. INTRODUCTION

0.1. Main result. Let (X, w) be a compact Kahler manifold and let D be a simple normal
crossing divisor on D. Let (E, 8, h) be a tame harmonic bundle over X — D (see § 1.1 for
precise definition), and let °E be the subsheaf of 1.E consisting of sections whose norms
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with respect to h have sub-polynomial growth, where 1 : X — D — X is the inclusion. By
Simpson-Mochizuki, °E is a locally free coherent sheaf, and (E, 0) extends to a logarithmic
Higgs bundle
0:E — °E ® Qy(log D)
such that
OAO=0.

We refer to § 3.2 for more details.
In this paper, we prove the following vanishing theorem.

Theorem A (=Theorem 3.18). Let (X, w) be a compact Kdihler manifold of dimension n, and
let D be a simple normal crossing divisor on X. Let (E, 6) be a tame harmonic bundle on X — D,
and let (°E, 0) be the extension of (E,0) on X as introduced above. Let L be a line bundle on
X equipped with a smooth metric hy so that its curvature V=1R(hy) > 0 and has at least
n — k positive eigenvalues. Let P be a nef line bundle on X. Then for the following (Dolbeault)
complex of sheaves

(0.1.1) Dol(E, 0) := E -5 E ® QL (log D) -5 - -- 25 E @ Q" (log D)
the hypercohomology

H' (X, Dol(’E, 6) ® L® P) = 0
foranyi>n+k.

Theorem A seems new even if the tame harmonic bundle (E, 8, h) comes from a complex
variation of polarized Hodge structures. It indeed interpolates the Kodaira-Akizuki-Nakano
type vanishing theorems for parabolic Higgs bundles [AHL19, Corollary 7.3] by Arapura,
Li and the second named author (in the case that L is ample, see Corollary 3.20), and the log
Girbau vanishing theorem by Huang-Liu-Wan-Yang [HLWY16, Corollary 1.2] (in the case
that (E,0) = (Ox-p,0), see Remark 3.19). We stress here that our proof of Theorem A is
essentially self-contained (in particular we do not apply the deep Simpson-Mochizuki cor-
respondence) and is purely in characteristic 0 (since we are working on Kéhler manifolds),
while [AHL19] applies heavy machinery (e.g. the complicated construction of parabolic
Higgs bundles over quasi-projective manifold, moduli spaces of parabolic Higgs bundles by
Yokogawa and the Biswas correspondence) to reduce the problem to the celebrated van-
ishing theorem by Arapura [Aral9] whose proof is in characteristic p (see § 0.3 for more
details). The main technique in the proof of Theorem A is a new application of L?-methods
to tame harmonic bundles, and we hope that it can bring some new input in the study
of L?-cohomology for Higgs bundles. Let us also mention a few byproducts of our proof:
we construct explicitly a complex of sheaves of L?>-forms which is quasi-isomorphic to the
Dolbeault complex (0.1.1) (see Theorem 3.17) in a similar manner (but using different met-
ric) as [Zuc79] in which Zucker did this for variation of polarized Hodge structures over a
quasi-projective curve; we also establish the Hormander L?-estimate and solvability criteria
for (Og + 0)-equations for general Higgs bundles (E, 0) (see Theorem 2.6 and Corollary 2.7).

If we apply the Simpson-Mochizuki correspondence [Sim90, Moc09] for parabolic Higgs
bundles on projective manifolds to Theorem A, we can obtain the following vanishing the-
orem for parabolic Higgs bundles.

Corollary B (=Corollary 3.20). Let X be a complex projective manifold of dimension n, and
let D be simple normal crossing divisor on X. Let (E, ,E, 0) be poly-stable parabolic Higgs
bundle on (X, D) with trivial parabolic degrees which is locally abelian. Let L be a line bundle
on X equipped with a smooth metric hy so that its curvature V—1R(hg) > 0 and has at least
n — k positive eigenvalues. Let P be a nef line bundle on X. Then for the weight 0 filtration °E
of (E, 4E, 0), one has

H' (X, Dol(’E.0) ® L® P) = 0
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foranyi>n+k.

For the notions in Corollary B we refer to §§ 3.1 and 3.7 for more details.

0.2. Idea of the proof. Let us briefly explain the main idea of our proof of Theorem A.
We first construct a complex of L? fine sheaves which is quasi-isomorphic to the Dolbeault
complex

(0.2.1) Dol(E, 0) := E —2= E® Qx(logD) — --- —5 E® Q% (log D)

For a given a Kahler metric on X — D, and a smooth metric g for E over X — D, we let

Qg) (X, E)y,., be the sheaf on E of germs of E-valued m-forms o with measurable coefficients

so that |0|§,w is locally integrable and (9 + 0)(o) exists weakly as a locally L? E-valued
(m + 1)-forms. Here the L? norms |0'|§’ » are induced by w on differential forms and by g on
elements in E. Since (9 + 0)? = 0, it thus gives rise to a complex of fine sheaves

(0.2.2) 2?2)(X, E)g. AN Q(zgn) (X, By
As the harmonic metric h is a canonical metric on the E, it is quite natural to make the
choice that g is the harmonic metric h and w is a Poincaré-type metric wp over X — D
as [Zuc79, CKS87, KK87]. However, even for the case when (E, ) comes from a varia-
tion of polarized Hodge structures over X — D, it turns out to be a quite difficult prob-
lem that ()3('2) (X, E)pwp, @ + 0) is quasi isomorphic to Dol(E, 0), and one essentially can-
not avoid the delicate norm estimate for Hodge metrics near D in [Sch73, Kas85, CKS86]
(see e.g. [Zuc79,]YZ07]). In this paper, we make a slight perturbation h(a, N) of the har-
monic metric h (see Lemma 3.10 for more details) as [Moc02, §4.5.3] so that h(a, N) will
degenerate mildly, albeit the norm of harmonic metric h for °E is of sub polynomial growth.
This construction indeed brings us several advantages (among others): we can prove that
(53('2) (X, E)n(a,N),0p> 0 + 0) is indeed quasi-isomorphic to Dol(E, ), and the negative contri-
bution of the curvature (E, 6, h(a, N)) is small enough which can be absorbed completely
by the curvature V—1R(hy) of any (partially) positive metrized line bundle (L, Ar).

Once this fine resolution of Dol(E, 0) is established, to prove Theorem A (we assume
now P = Ox for simplicity), the hypercohomology of Dol(E, 8) ® L is isomorphic to the

cohomology of the complex of global sections of (0.2.2)
(0.2.3) (LZ2)(X — D, E ® LIX-D)h(a,N)-hp,p> D),

where D” := Jpgr + 0 ® 1} satisfying D”? = 0. We then reduce the proof of Theorem A
to the vanishing of L?-cohomology of (0.2.3) for i > dim X + k. To prove this, we first
generalize the L?-estimate by Hérmander, Andreotti-Vesentini, Skoda, Demailly and others
to Higgs bundles. Roughly speaking, we prove that under certain curvature conditions for
Higgs bundles (E, 0), we can solve the D”-equation as the d-equation in a similar way (see
Theorem 2.6 and Corollary 2.7). We then choose the perturbation h(a, N) of h carefully
so that such required curvature condition can be fulfilled and it enables us to prove the
vanishing result for the L?-cohomology of (0.2.3). This idea of solving D”-equation for
Higgs bundles using L>-method seems a new ingredient as we are aware of.

0.3. Previous results. For X a complex projective manifold with a simple normal cross-
ing divisor D, Arapura [Aral9] gives a vanishing theorem for semistable Higgs bundles
(E, 0) over X — D with trivial parabolic structure, trivial Chern classes and nilpotent Higgs
field 0. In the spirit of the algebraic proof of the Kodaira vanishing theorem by Deligne-
Ilusie [DI87], the proof of Arapura’s vanishing theorem is reduced to the mod p-setting
and boils down to a periodic sequence of Higgs bundles (E;, 6;) = B'(E, §) through an oper-
ator B raised from the absolute Frobenius morphism, which is due to Lan-Sheng-Yang-Zuo
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[LSZ19,1.5YZ13] and Langer [Lan15]. The dimension of the cohomology H'(X, Dol(E;, ;) ®
L") is non-decreasing for {(E;, 6;)}, then Arapura’s vanishing theorem follows from Serre’s
vanishing theorem. With his vanishing theorem, Arapura reproves the Saito’s vanishing
theorem (see, e.g. Popa [Pop16]) for polarized variations of Hodge structures with unipo-
tent monodromy on the complement of a normal crossing divisor on any complex projec-
tive manifold. In the following up article [AHL19], Arapura’s vanishing theorem for Higgs
bundles is generalized to parabolic Higgs bundles coming from tame harmonic bundles over
X — D, especially the nilpotency condition for Higgs field 6 is get rid of, which is inevitable
due to technical reasons in [Aral9]. Also, the parabolic structures in the generalized van-
ishing theorem are allowed to be nontrivial and the jumping numbers of the parabolic Higgs
bundles are real. Two main steps of the proof in [AHL19] reduce the generalized vanishing
theorem to Arapura’s vanishing theorem [Aral9]. After perturbing the jump numbers to
rational numbers and using Biswas’s correspondence [Bis97], one reduces the proof to the
case in which the Higgs bundles have trivial parabolic structures. Another reduction step is
using the C*-action on the moduli space of parabolic Higgs bundles, and the properness of
the Hitchin fibration due to Yokogawa [ Yok93] to reduce the proof to the case with parabolic
Higgs bundle admitting nipotent Higgs field.
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supported by grant G097819N of Nero Budur from the Research Foundation Flanders. This
work was started while both authors were participating the workshop on “mixed Hodge
modules and Hodge ideals” at the university of Angers on 1-5 April 2019. We would like to
thank the organizers for their hospitality.

NOTATIONS AND CONVENTIONS

A couple (E, h) is a Hermitian vector bundle on a complex manifold X if E a holomorphic
vector bundle on X equipped with a smooth hermitian metric h. d¢ denotes the complex
structure of E, and we sometimes simply write d if no confusion arises.

Two hermitian metrics h and h of a holomorphic vector bundle on X if mutually bounded if
C~'h < h < Ch for some constant C > 0, and we shall denote by h ~ A’.

For a hermitian vector bundle (E, h) on a complex manifold, R(h) denotes its Chern curva-
ture.

For a Higgs bundle (E, h) with a smooth metric h on a complex manifold, F(h) := R(h) +
[0, 9;], where 9; is the adjoint of 6 with respect to h.

A denotes the unit disk in C.

The complex manifold X in this paper are always assumed to be connected and of dimension
n.

Throughout the paper we always work over the complex number field C.

1. TECHNICAL PRELIMINARY

1.1. Higgs bundle and tame harmonic bundle. In this section we recall the definition
of Higgs bundles and tame harmonic bundles. We refer the readers to [Sim88,5im90,S5im92,
Moc02,Moc07] for further details.

Definition 1.1. Let X be a complex manifold. A Higgs bundle on X is a pair (E, ) where
E is holomorphic vector bundle with df its complex structure, and 0 : E - E® Qy is a
holomorphic one form with value in End(E), say Higgs field, satisfying 6 A 6 = 0.
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Let (E, 0) be a Higgs bundle over a complex manifold X. Write D” := dg+6. Then D"? = 0.
Suppose h is a smooth hermitian metric of E. Denote by 8, + 0r the Chern connection with
respect to h, and 9; be the adjoint of § with respect to h. Write D;l = 0p + 9;. The metric h
is harmonic if the operator Dy, := D;l + D” is integrable, that is, if DI21 = 0.

Definition 1.2 (Harmonic bundle). A harmonic bundle on a complex manifold X is a Higgs
bundle (E, ) endowed with a harmonic metric h.

Let X be an n-dimensional complex manifold, and let D be a simple normal crossing
divisor.

Definition 1.3. (Admissible coordinate) Let p be a point of X, and assume that {D;};-1,
components of D containing p. An admissible coordinate around p is the tuple (U; z1, . . ., zn; @)
(or simply (U; zy, . . ., z,) if no confusion arises) where

e U is an open subset of X containing p.
e there is a holomorphic isomorphism ¢ : U — A" so that ¢(D;) = (z; = 0) for any
j=1...,¢
We shall write U* := U—-D,U(r) :={z €U | |zil <r,Vi=1,...,n}and U*(r) := U(r)NU".

For any harmonic bundle (E, 8, h), let p be any point of X, and (U; zy, . . ., z,) be an ad-
missible coordinate around p. On U, we have the description:

4 n
(1.1.1) 0=> fdlogzj+ ) gedz

Jj=1 k=C+1

Definition 1.4 (Tameness). Let t be a formal variable. We have the polynomials det(f; —1),
and det(gx — t), whose coefficients are holomorphic functions defined over U*. When the
functions can be extended to the holomorphic functions over U, the harmonic bundle is
called tame at p. A harmonic bundle is tame if it is tame at each point.

Recall that the Poincaré metric wp on (A*)! x A" is described as

Zl\/_dz]/\dz] N i \/—_1dzk/\d2k.

(log [z )2~ &4~ (1— |z [2)?

Note that

¢ n
wp = —\/—_166 log l_l 10g |Zj rl (1 - |Zk|2))'
=1 k=(+1

For the tame harmonic bundle, we have the following crucial norm estimate for Higgs
field 0 due to Simpson [Sim90] for the one dimensional case and Mochizuki [Moc07, Lemma
8.3] in general.

Theorem 1.5. Let (E, 0, h) be a tame harmonic bundle. Let f;, gi be the matrix-valued holo-
morphic functions as in Definition 1.3. Then there exists a positive constant C > 0 satisfying
that

Ifiln < C, for j=1,....¢
lgkln < C, for k=¢€+1,n.

In other words, the norm

10lh,p < (~loglzl?)

MN

j=1

holds over some U*(r) for some constantC > 0 and1 <r < 1. O
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1.2. Curvature property of Higgs bundles. Suppose now (E, 0) is a Higgs bundle of
rank r equipped with a metric h over a Kéhler manifold (X, ) of dimension n .
We make the following assumption for (E, 6, h) throughout this section .

Assumption 1.6. 8_]59;; =0.

Let us denote by Dy, := D} +D" a connection and F(h) := D}zl. Assumption 1.6 is equivalent
to that 9,0 = 0. Hence
(1.2.1) F(h) = D} = [D},D"] = R(h) + [0,6"] € A¥'(X,End(E)),
where R(h) := (0y + dg)>. Moreover, one can easily see that (V-1F(h))* = V=1F(h). In
other words, V-1F(h) is a (1, 1)-form with Herm(E)-value, where Herm(E) is the hermitian

endomorphism of (E, h).
By Simpson [Sim88], one has the following Kahler identity:

(1.2.2) V-1[A,.D"] = (D})*
(1.2.3) V-1[A,, D] = —(D")*

where (D))" and (D”)" are the formally adjoint operators of D} and D” with respect to h and
w, and A, is the adjoint operator of Aw with respect to Hodge inner product on differential
forms. Define the Laplacians

A = D,Dy +(D;,)"D,

A" = D'(D")" +(D")"D”
A computation can easily derive the following equality.
Lemma 1.7 (Bochner-Kodaira-Nakano identity for Higgs bundles).
(1.2.4) A" = N + [V=1F(h), A,]
Proof. By (1.2.3), one has

A" =D"(D")* +(D")*D" = —N-1[D", [A,, D} ]1.
By the Jacobi identity, one has
A" = N-1[D}, [Ay, D"1] = V=1[A,, [D;,, D"]]

"2 (D4 (D)) + [V11D;. DL A

(1.2.1)

=" A + [V=1F(h), A,],
which is the desired equality. ]
1.3. Notions of positivity for Higgs bundles. Let (E, ) be a Higgs bundle endowed with
a smooth metric h, which satisfies assumption 1.6. For any x € X, let ey, ..., e, be a frame
of E at x, and let e!, . . ., e” be its dual in E*. Let zy, . . ., z, be a local coordinate centered at

x. We write
F(h) = R(h) + [0.6;] = R dz; ndzc® e @ ¢

Set R, = hyﬁ_R;l%a’ where h,z = h(ey, ep). F(h) is called Nakano semi-positive at x if

Z Rj,;aﬁujauTﬁ >0
j’kva’ﬂ

foranyu =3}, uj“aizj ey € (T)l(’o ® E),. F(h) is called Griffiths semi-positive at x if

> R 18P 2 0

Jk.ap
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forany & = 3, §j£ € T)i’?c and any { = ), (%e, € Ex. (E,0,h) is called Nakano (resp.
j B
Griffiths) semipositive if F(h) is Nakano (resp. Griffiths) semi-positive at every x € X.
When 6 = 0, this reduces to the same positivity concepts in [Dem12, Chapter VII, §6] for
vector bundles.
We write

F(h) >nac Mo ® Tg)  forAeR
if o

Z ( jkaB Aw khaﬁ)( )u]aukﬁ 20

Jk.a.p
forany x € X andany u = }}; , u w2 6 - ®eq € (T1 ¥ ® E),. We denote by
(h) 26 Alw ® Tg)

if

Z (Riep = A0jhyp) () ELEERP > 0

j,k,a ﬁ
forany x € X, any & = }; §ja%j € T)l(fc and any { = ), (%, € E.. A Higgs bundle is
Griffiths semi-positive (resp. semi-negative) if it is Nakano positive (resp. semi-negative).

Lemma 1.8. Let (E, h) be a hermitian vector bundle on a Kihler manifold (X, w). If there is
a positive constant C so that |R(h)(x)|n, < C for any x € X, then

Cow®1g >Nk R(h) >Nak —Co ® Tg

Proof. For any x € X, let zy, ..., z, be alocal coordinate centered at x so that
=vV-1 Zn: dzy Ndzy
=1
Letey, ..., e, be alocal holomorphic frame of E which is orthonormal at x. Write
R(h) = Rf];adzj ANdzZ ® e” ® ep.
Then Rﬂ;a[;(x) = Rfl%a (x), and we have
D Rigs (P = IR(B)(x)I7,, < C°.

Jik.o.p

Hence for any u = }; , uJ“ 6 - ®eq € (T ® E)y, one has

|2 Rikapx uf“ukﬂl2<ZlZ Jrap (9 WP
Jk.a.p Jj.ax
< Z(Z IR g ()1 %) - (Z jukb|?)

ja kp
=ful - > O IRp () P)
k.p Ja
<lulp,- D Q) |Rﬂ;a5<x>|2><z W)
k.p Ja j
<luli, D) Rigg@)I* < luly,, - ROBI? .
Jike.p

Hence one has
2 j 2
—Cluly, < Z Rj,;aig(x)u”ukﬁ < Cluly,,
Jk.e,B
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The lemma is proved. O
The following easy fact will be useful in this paper.

Lemma 1.9. Let (Ey, hy) and (E,, hy) are two hermitian vector bundles over a Kdhler manifold
(X, ) such that |R(h1)(x)|h,.0 < Ci and |R(h2)(x)|p, < Cz for all x € X. Then for the
hermitian vector bundle (E, ® E,, h1h;), one has

IR(h1h2) (%) |nyhy < VZrZCz +2r;C2

forall x € X. Herer; := rankE;.

2. L?-METHOD FOR HIGGS BUNDLES

2.1. A quick tour for the simplest case. In this subsection, we assume that (E, 0, h) is
a harmonic bundle over a projective manifold X. We will show how to apply Bochner
technique to give a simple and quick proof of Theorem A in the case L is ample. The main
goal of this subsection is to show the general strategy and we will discuss how to generalize
these ideas to prove Theorem A.

For a Higgs bundle (E, 0) over a projective manifold X of dimension n, one has the fol-
lowing holomorphic Dolbeault complex

% 0 0
(2.1.1) Dol(E,0) =E 5 Ee QL 5 - S5 Ee Qb
By Simpson [Sim92], the complex of "™ sections of E
(2.1.2) E) 2 /) S 2 )

gives a fine resolution of the above holomorphic Dolbeault complex. Indeed, it can be
proven easily from the Dolbeault lemma. Here .o7™(E) is the sheaf of germs of smooth m-

forms with value in E. Hence the cohomology of complex of its global sections (A' (E),D” )
computes the hypercohomology H* (X ,Dol(E, 9))

Suppose now (E, 0) is a stable Higgs bundle with vanishing Chern classes. By the Simp-
son correspondence, there is a unique (up to a constant rescaling) hermitian metric h over
E so that the curvature R(E, h) = 0. Assume that L is an ample line bundle on X equiped
with a smooth metric h; so that its curvature tensor V—1R(L, h;) is a Kéhler form w.

Let us define a new Higgs bundle (E, 0) := (E®L, 01 ). We introduce a hermitian metric

h on E defined by h := h ® hy. One can easily check that (E, 6, h) satisfies Assumption 1.6
and the curvature

(2.1.3) V=1F(E, h) := V=1R(E, h) + V-1[6,0"] = V=1R(L, h;) ® 1f = 0 ® 1.
By the Hodge theory, for each i € Z>,, we know that the space of harmonic forms
A= {a € A(E) | Na =0}
is isomorphic to the cohomology H' (A’ (E), D”) ~ | (X, Dol(E, 9))
Theorem 2.1 (Theorem A in the case that D = @ and L is ample). With the notations in
this subsection, H! (X, Dol(E, 0) ® L) =H! (X, Dol(E, 0)) =0 fori > n.

Proof. Note that Dol(E, 0) = Dol(E, é) ® L. It suffices to prove that 7' = 0 for i > n. We
will prove by contradiction. Let us take the Kéhler form w := V—1R(L, hr). Assume that
there exists a non-zero a € J¢"'. Then by Lemma 1.7, one has

(2.1.4) 0=Aa=Na+ [V-1F(E,h), A, ]
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An integration by parts yields
(Na, ) = IDjally, + (D) el > 0.

Hence

0> f (VZTF(E, ), Aua, @hpdVol,
X
@13 f ([0 ® 1, Ay]et, @hndVol,,
X

= f(i — n)l|alpdVol, > 0
X

for i > n. Here dVol,, := “;—',1 denotes the volume form of (X, ). Hence the contradiction. O

Hence the above proof inspires us that, to prove Theorem A in full generality, we shall
find a ‘proper’ complex of fine sheaves which is quasi-isomorphic to Dol(E, 0), so that its
cohomology of global sections can be computed explicitly. Inspired by the work [Zuc79,
DPS01,HLWY16], we will consider the Lz-complex as the candidate for this complex of fine
sheaves. However, instead of solving d-equation for vector bundles to prove the vanishing
theorem, we shall consider L?-estimate and solvability criteria of (Jr + 0)-equations for
Higgs bundles (E, 8). This is the main content of next subsection.

2.2. Héormander L*-estimate for Higgs bundles. Solvability criteria for d-equations on
complex manifolds are often described as cohomology vanishing theorems. It is essentially
based on the abstract theory of functional analysis. Since the Kéhler identities (1.2.2) and
(1.2.3) hold for Higgs bundles, it inspires us that the following principle should hold.

Principle. The package of L*-estimate by Hormander, Andreotti-Venssetti, Bombieri, Skoda,
Demailly et. al. should hold without modification for Higgs bundles, provided that the D" is
used in place of 0 and that m-forms are used instead of (p, q)-forms.

In this subsection we prove that for Higgs bundles over a complete Kéhler manifold under
certain curvature condition, one can solve the D”-equation in the same vein as [Dem12,
Chapter VIII, Theorem 4.5]. We follow the standard method of L? estimate as that in [Dem12,
Chapter VIII], and we provide full details for completeness sake.

Let us denote by A™(X, E) (resp. AP4(X, E)) the set of smooth E-valued m-forms (resp.
(p, g)-forms) on X, and denote by A7'(X, E) (resp. A’g’q(X ,E)) the set of smooth E-valued
m-forms (resp. (p, q)-forms) on X with compact support over the Kahler manifold (X, ).
The pointwise length of u € A™(X, E) with respect to the fiber metric induced by h and
w, is denoted by |ulp . The pointwise inner product of u and v is denoted by (u, v)p 4, or
simply by (u, v). Then the L?-norm of u denoted by ||ul|,,, or simply by ||u||, is defined as

the square root of the integral
lull? := f ul?, dVol,
X

where dVol, := “r’l—:l which is finite if u € Af’(X, E). The inner product of u and v associated
to this norm is defined by

(O = f (at, 0) o dVol,
X

which is simply denoted by u, v)). Note that the Hodge decomposition A7 (X, E) = 69p+q:mAjg’q(X ,E)
is orthogonal with respect to this inner product (e, ).



10 YA DENG AND FENG HAO

We shall denote by L(z) oc X E) (resp. Lp;; 1oc X, E)) E-valued m-forms (resp. (p,q)-

forms) with locally integrable coefficients. One has a natural decomposition

Lg),loc (X’ E) = @P"’q le()Zg loc(X’ E)

Moreover, the operators D" (and D}, Of respectively) act on L’” 1oc (X, E) In the sense of

distribution, or precisely speaking, E-valued currents. Note that those objects are all defined

without the choice of the metrics w and h. A section s € LZ’;) 1oc (X, E) is said to be in the

domain of definition of D”, denoted by Dom,.D”, if D"s € L?;)rlloc (X,E).

Let L’é) (X, E)p (resp. Lf(’g (X, E)n,) be the completion of the pre-Hilbert space A7 (X, E)

(resp. Ap “I(X, E)) with respect to the above inner product (e, ¢). We simply write L?" (X,E)

(X, E)) if no confusion happens. By the Lebesgue’s theory of integration, L’(’;) (X,E)

(X, E) (resp. L‘{(J;)] 10X, E)). The natural decomposition

L7 (X, E) = @pqmmllyl (X, E)

is orthogonal with respect to the inner product e, ).
Hence D” (and D), Jg respectively) act on them respectively, and these operators are
unbounded, densely defined linear operators

(resp. L(z)
b q : m
(resp. L(z)( ,E))is a subset OfL(Z),loc

Li (X, E) — L’";l(x E).

The domain of definition of D" denoted by DomD"” are defined by

{ue Ll (X,E) | D'uc L'(';jl(x, E)},

for which one has DomD” C Domj,.D”. Note that DomD” depends on the choice of the
metric w and h, up to mutual boundedness. Namely, if ® ~ © and h ~ h, DomD” remains
the same in terms of the new metrics & and h.

By the argument in [Dem12, Chapter VIII, Theorem 1.1], this extended operator D” (the
so-called weak extension in the literature) is closed, namely its graph is closed. DomD), is
defined in exactly same manner.

The following result in [Dem12, Chapter VIII, Theorem 3.2.(a)] is crucial in applying the
L*-estimate. Roughly speaking, it gives a condition when the weak extension of D” is the
strong one, in terms of the graph norm, and it enables us to apply the integration by parts
for L%-sections as in Lemma 2.4.

Theorem 2.2. Let (X, w) be a complete Kihler manifold and (E, Og,0,h) isa Higgs bundle on
X satisfying Assumption 1.6. Then Af'(X, E) is dense in DomD”, DomD"* and DomD"” NDomD"*
respectively for the graph norm

ues flull +1ID"ull,  we llull + (D7) ull,  u e lull + ID"ull + 1D ull.

We recall the following theorem of functional analysis by Von Neumann and Homander,
which is crucial in obtaining the L?-estimate for Higgs bundles.

Lemma 2.3. Let 57, 7 and 5¢; be complex Hilbert spaces, and T : 51 — 3 and S :
Hy — F¢ are closed and densely defined linear operators satisfying DomS D ImT. Then

(i) 4 =kerS & ImS*.
(ii) Letv € 3, Thenv € ImT if and only if there exists a nonnegative number C such that

(2.2.1) [, vl < ClIT ully

holds for any u € DomT".
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Note that y € DomT™* if the linear form
DomT 3 x = (Tx,y),

is bounded in .74{-norm. Since DomT is dense, there exists for every y in DomT" a unique
element T*y 7/ such that {x, T*y); = {Tx,y), for all x € DomT.
Note that A, := [V=1F(h), A,] acts on A" Ty ®F as a hermitian operator. As A, is smooth,

1
foranyu € L’(’;) 0K E) A (u) € LZ’;) 10X E). If Ay, is semi-positively definite, A7, is also a
densely defined hermitian operator from L’(’;) (X, E) to itself. The following result is exactly

the same vein as the Kodaira-Nakano inequality (see [Dem82, lemme 4.4])

Lemma 2.4. Let (X,w) be a complete Kihler manifold and (E, Og,0,h) is a Higgs bundle
on X satisfying Assumption 1.6. Assume that A, is semi-positively definite. Then for every
u € DomD” N DomD"”*, one has

(2.2.2) ID"ull® + ID"*ull* > Amu, u) = f (A, wp,,d Vol,
X

Proof. Since (X, w) is complete, by the proof of [Dem12, Chapter VIII, Theorem 3.2.(a)],
there exists an exhaustive sequence {K, } e of compact subsets of X and functions p, such
that p, = 1 in a neighborhood of K,, Supp(p,) € Ky+1, 0 < p, < 1, and |dp,|, < 27".
One can show that p,u — u in the graph norm u — |lu|| + ||[D"u|| + ||D"*ul|. Since A,, is
supposed to be semi-positively definite, hence

lim (Am(pvu), pvu>h,de01a) = f(Am(u), u)h,deOIw,
X X

V—+00

which might be +o0 in general. Hence it suffices to prove (2.2.2) under the assumption that
u has compact support.

By the convolution arguments in [Dem12, Chapter VIII, Theorem 3.2.(a)], there exists
ue € Aj (X, E) so that u, tends to u as £ — oo with respect to the graph norm |[[u|| + [|[D"u/| +
[ID"”*u||, and there is a uniform compact set K so that Supp(u,) C K for all £. By Lemma 1.7,
one has

CA"ug,ue) = (D ug, ueh + {Amue, ueh
As u, has compact support, one applies integration by parts to obtain
CA"ug, ue) = 1ID"ugll® + 11D u|?
and
(A'ug,ue) = | Duell* + 1D ue||* = 0
which gives rise to
1D ugll? + 11D ucll® = (Amuc, ue)
(2.2.2) follows from the above inequality when ¢ tends to infinity. The lemma is proved. O

Remark 2.5. Suppose that A, is a semi-positively definite hermitian operator on A"Ty ® E.
For some v € L™ (X, E), assume that for almost all x € X, there exists a(x) € [0, +oo[ so

(2)
that
|<U’ f)h,a)lz < a(x)<vaAm(x)v>h,w

forany f € A7'(X, E)y. If the operator Ay, (x) is invertible, the minimum of a(x) is (Ap (x) ™'t U}
Hence we shall always formally write it in this way even when A, (x) is no longer invertible,
following [Dem12, Chapter VIII, §4].

Now we are able to state our main result on L*-estimate for Higgs bundles.



12 YA DENG AND FENG HAO

Theorem 2.6 (Solving D”-equation for Higgs bundle). Let (X, ») be a complete Kihler man-
ifold, and (E, O, 0, h) be a Higgs bundle on X satisfying Assumption 1.6. Assume that Ay, is
semi-positively definite on N"Ty ® E at every x € X. Then for anyv € L) )(X E) such that
D"v =0 and

f(A,_nlv,v)dVolw < +o00,
X

there exists u € L’(gl(X, E) so that D"u = v and

lull? < f (A, vYdVol,.
X

Proof. We will apply Lemma 2.3.(ii) to prove this theorem. We have the following compar-
ison

A = LT (X.E) — S 5 = L7 (X.E) =D = LY (X, B),

which satisfies the conditions in Lemma 2.3.(ii).
For any f € DomS N DomT", one has

IFropl? = | fx (f, v)dVol,|* < | fx (A0, 0)7 - (A S, f)2dVol,|?

< f (A lv, v)dvol, - f (Anf, frdvol,
X X
by Cauchy-Schwarz inequality. By (2.2.2) one has
(2.2.3) Kf 007 < CUSFIZ+ T F11%),

where C := fX(A,‘nlv, v)dVol, > 0.
Note that T* o S* = 0 by S o T = 0. By Lemma 2.3.(i), for any f € DomT", there is an

orthogonal decomposition f = f + fo, where f; € ker S and f; € (ker S)* = Im S* C ker T*.
Since v € ker S, by (2.2.3) we then have

1KF o017 = 1€, o2 < CUSAI? + IIT* fill*) = CIT* All* = CIT* FII*.

By Lemma 2.3.(ii), we conclude that there is u € LE’;I(X, E) so that Tu = v with |lull; < C.
The theorem is proved. O

A direct consequence is the following result which can be seen as a Higgs bundle version
of Girbau vanishing theorem (see [Dem12, Chapter VII, Theorem 4.2]) in the log setting
[HLWY16, Theorem 4.1].

Corollary 2.7. Let (X,w) be a complete Kihler manifold, and (E, 0~, fl) be any harmonic
bundle on X. Let L be a line bundle on X equipped with a metric hy. Assume that for some
m > 0, one has

(2.2.4) (IN=1R(hp), Aol fs o > el f12

forany f € APIT; , any x and anyp + q = m. Set (E, 0, h) := (E®L,0 ® 11, hhy). Then for

anyv € LE’;) (X, E) such that D”v = 0, there exists u € L’(’;)l(X, E) so that D"u = v and

[o]l®

2
llull® <
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Proof. Note that
VZIF(R) = V=1 (R(h) + [0, 9;;])
= V=1R(h) ® 1, + V-1R(h) @ T + [0 © 1,,6° @ 1]
= V=1F(h) ® 1, + V=1R(h;) ® 1
(2.2.5) = V=1R(h1) ® 1,
where the last equality follows from that F (h) = 0 since (E, 0, h) is a harmonic bundle. In

this case, it is easy to see that for any f € (A"Ty ® E)x, decomposing f = 34— 7 with
fP4its (p, q)-component, one has

Anfs oo = ), (IN=IR(h), Aol ® Te(fP9), PO, 0 2 D elfP I}, = elfI},-
p+q=m prq=m
Hence (A,'f, fono < € 'IfI} . Applying Theorem 2.6, we conclude that there is u €

L'('gl(X, E) so that D”u = v and

2
- v

llull® < f(Amlv, V)hwdVol, < ” g” -

X

3. VANISHING THEOREM FOR TAME HARMONIC BUNDLES

3.1. Parabolic Higgs bundle. In this section, we recall the notions of parabolic Higgs
bundles. For more details refer to [AHL19, section 1, 3, 4, 5] and [MY92, section 1]. Let
X be a complex manifold, D = Zle D; be a reduced simple normal crossing divisor and
U = X — D be the complement of D.

Definition 3.1. A parabolic sheaf (E, ,E, 0) on (X, D) is a torsion free Oy-module E, to-
gether with an R'-indexed filtration 4E (parabolic structure) by coherent subsheaves such
that

1). a € Rl and ,E|ly = E.

2). For1 < i < I, g41,E = 4E(-D;), where 1; = (0,...,0,1,0,...,0) with 1 in i-th

component.

3). a—eE =4 E for any vector € = (e, ...,€) with0 < e < 1.

4). The set of weights a such that ,E/4cE # 0 is discrete in R! for any vector € =
(6,...,e)with0 < e <« 1.

A weight is normalized if it lies in [0, 1)1. Denote (E by °E, where 0 = (0,...,0) . Note
that the parabolic structure of (E, 4E, 6) is uniquely determined by the filtration for weights
lying in [0,1)!. A parabolic bundle on (X, D) consists of a vector bundle E on X with a
parabolic structure, such that as a filtered bundle.

Definition 3.2. A parabolic Higgs bundle on (X, D) is a parabolic bundle (E, 4E, 0) together
with Ox linear map
0:E— Qi(logD) ® E

such that
ONO=0
and
0(,E) € Q) (log D) ® 4E,
for a € [0,1)%.

A natural class of parabolic Higgs bundles comes from prolongations of tame harmonic
bundle, which is discussed in the following section.
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3.2. Prolongation by an increased order. By a celebrated theorem of Simpson and Mochizuki,
there is a natural parabolic Higgs bundle induced by tame harmonic bundle (E, 6, h).
We recall some notions in [Moc07, §2.2.1]. Let (X, D) be the pair in subsection 3.1. Let E
be holomorphic vector bundle with a € hermitian metric h over X — D.
Let U be an open subset of X, which is admissible with respect to D. For any section
o € I'(U - D,Ely-p), let |o|, denote the norm function of o with respect to the metric
h. We denote |o|, € O(Hf:1 |z;] %) if there exists a positive number C such that |o], <
C- Hle |zi| . For any b € R, say —ord(c) < b means the following:

{
ol = O([ [12:77)
i=1

for any real number ¢ > 0. For any b, the sheaf ,E is defined as follows:
(3.2.1) T(U - D, 4E) := {o € T(U — D, EJy_p | —ord(c) < b}.

The sheaf ,E is called the prolongment of E by an increasing order b. In particular,we use
the notation °E in the case b = (0, ...,0).

According to Simpson [Sim90, Theorem 2] and Mochizuki [Moc09, Propostion 2.53], the
above prolongation gives a parabolic Higgs bundles, especially 6 preserves the filtration.

Theorem 3.3 (Simpson, Mochizuki). Let (X, D) be a complex manifold X with a simple nor-
mal crossing divisor D. If (E, 0, h) is a tame harmonic bundle on X — D, then the corresponding
filtration pE according to the increasing order in the prolongment of E defines a parabolic bun-
dle (E, pE, 0) on (X, D). O
Definition 3.4 (Acceptable bundle). Let (E.dg, h) be a hermitian vector bundle over X — D.
We say that (E.0f, h) is acceptable at p € D, if the following holds: there is an admissible
coordinate (U;zy,...,z,) around p, so that the norm |R(E, h)|ngn, < C for C > 0. When
(E.Og, h) is acceptable at any point p of D, it is called acceptable.

3.3. Modification of the metric. This subsection is mainly inspired by [Moc02, §4.5.3].
Let us consider the case X = A", and D = Zle D; with D; = (z; = 0). Let (E, 0g, h) be an
acceptable bundle over X — D. For any a € R‘;O and N € Z, we define
{ ¢ n
(3.3.1) x(a,N) := - Z a;jlog |z;|* - N( Zlog(—log |z;[%) + Z log(1 — Izklz)).
j=1 j=1 k=C(+1
Set h(a, N) := h- e X@N) Then
R(h(a,N)) = R(h) + V=189 y(a, N) = R(h) + Nwp.

Note that Qx- = @] L; where L; is the trivial line bundle defined by L; := p;Qa- for
i=1,...,6and L = pZQA for k = ¢ +1,...,n where p; is the projection of (A*)‘; x A"t
to its i-th factor. For any p = 1,...,n, set hy to be the hermitian metric on Qf(* induced
by wp. Then there is a positive constant C(p,£) > 0 depending only on p and ¢ so that

Proposition 3.5. Let (E, Og, h) be an acceptable bundle over X — D, where X is a compact
complex manifold and D is a simple normal crossing divisor. Then there is a constant Ny > 0
so that, for any p € D, one has an admissible coordinate (U; z4, . . ., z,) around p (which can be
made arbitrary small), and for vector bundles é‘}, = T{JJ* ® E and 3‘}, = Q‘g* ® E, which are all
equipped with the €'~ -metric hg, and hz, induced by h(a, N) and wp, one has the following
estimate

(3.3.2) V=1R(h¢g,) Znak wp ® 1,5 V-1R(hgz,) <cn 2Nwp ® 1 7,
over U* for any N > Ny. Such Ny does not depend on the choice of a.
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Proof. As (E, h) is assumed to be acceptable, for any x € D, one can find an admissible
coordinate (U;zy, ..., zy; ¢) around x so that [R(h)|n,, < C. By the above argument, one
has |R(hp)|hp,wp < Cp. By Lemma 1.9, we conclude that there is a constant C; > 0 which
depends only on C so that

|R(h;1h)|hj;lh,wp < Ci, |R(hph)In,hep < C
for any p = 0,...,n, where h;lh is the metric for &, and hyh is the metric for .%,. By
Lemma 1.8, one has
V=1R(h,"h) 2nac ~C1o0p ® T g, V=1R(hph) <nax C1e0p ® 1.7,
As hg, = h;lh(a, N) and hg, = hyh(a, N), we then have

V=1R(hs,) 2xac (N = C1)op ® T, V=1R(hz,) <xax (N +C)op ® 1.7,

If we take Ny = C; + 1, then the desired estimate (3.3.2) follows for any N > N,.

Now we will prove that for points near x, the above estimate N, holds uniformly. As C;
depends only on C, one has to prove that there is a constant C so that for any point z near
x, there is an admissible coordinate with respect to z so that |R(h)ls, < C.

Claim 3.6. Let ¢ : A — A* defined by () = £ + % Then
V-1dz A dz V-1dt A dt _ V-1dt A dt
QS* 2 £ 222: 2 ZZSCZ —1dt/\dtSC2—22 .
22(log 2 ~ 190 (log pOF7 = (1= 1)
where C; = 16(log &) 2.
For any z € U, we first assume that z; = --- = z; = 0, namely the components of D
passing to z are the same as x. Take isomorphisms of unit disk {¢; € Aut(A)}j=¢41,..n SO
that ¢;(z;) = x;. Note that x; = --- = x, = 0. Hence (Ta,..., 1A, ¢p41,. ... pn) 0@ : U — A"

gives rise to the admissible coordinate for z, and the Poincaré metric wp is invariant under
this transformation. Hence one can take N, = N,.

Now we assume that z; = - - - = z;,, = 0, and that any of {z,11, . . ., z¢} is not equal to zero.
We first take automorphisms {7;}i=m+1...¢ € Aut(A*) so that ryi(%) =z;. Setp; = nio¢:
A — A*fori=m+1,...,{. Take isomorphisms of unit disk {¢; € Aut(A)}j=¢4+1,...n so that
$i(zj) = xj. Then @ to(Ta, ..., Tp, Pmsts.. . Pn) : A" — X will gives rise to the desired
admissible coordinate for such z. By the above claim, one has |R(h)|,, < C2C. Hence the
above estimate N, can be made uniformly in U. As X and D is compact, one can cover D
by finite such open sets, and the desired Nj in the theorem can be achieve.

We now show that these admissible coordinates can be made arbitrarily small. For 0 <
€ <1, set

¢e : A" — A"
(z1,...,2n) > (€21, ...,€2y).
For any admissible coordinate (U;zy, . .., zn; ¢) around x so that |R(h)|y., < C, one can
introduce a new one (U(¢); wy, . .., wp; @) around x with
0. : U(e) —> A"
X = ¢ 0 ¢e(x).
When ¢ < 1, this admissible coordinate will be arbitrarily small. Note that ¢ wp < wp.
Hence in (U(e); wy, . .., wn; @), one still have |R(h)|;, < C. The constant Ny is thus un-
changed. The proposition is proved. m]

This result will be important for us to construct a fine resolution of parabolic Higgs
bundles in § 3.5.
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3.4. From L-integrability to ¢’-estimate. Note that in order to show the quasi-isomorphism
between some complex of sheaves of L:-forms and (0.1.1), one has to deduce some norm
estimate of sections from the L2-integrability condition. In the case that (E, ) is a line
bundle without Higgs field, this is not difficult and has been carried out in [DPS01, §2.4.2]
and [HLWY16, Theorem 3.1]. This subsection is devoted to show this using mean value
inequality following [Moc09, Lemma 7.12].

We first recall the following well-known lemma and we provide the proof for complete-
ness sake.

Lemma 3.7. Assume that R(h) is Griffiths negative. Then for any holomorphic section s €
H°(X,E), one has

V=188 1log sl > o.

Proof. Outside the zero locus (s = 0), one has

— D/ ,D/ D/ , A ,D/ —lR h ’

V-18d log Is|? = \/le _ \/—_l{ S, Sth 4{8 St (V-1 (z)s shh
s}, sl 5|2

, _WV-1RM)s,sh

CLEIS
s[2

where the first inequality is due to Cauchy-Schwarz inequality and the second one follows
from the assumption that R(h) is Griffiths negative. As log ISIfl is locally bounded from
above, it is thus a global plurisubharmonic function on X. ]

Proposition 3.8. With the same setting as Proposition 3.5, for any p € D, we take an admis-
sible coordinate (U; zy, . . ., z,) around p and pick N > Ny as in Proposition 3.5. Then for any
section s € H*(U*, Q‘g* ® E|x+), when 0 < r < 1, one has

¢
(34.1) Slhop(2) < Clisllhanyap - (] ] 12770

i=1
forany$ > 0 and anyz € U*(r).

Proof. By Proposition 3.5, for the hermitian vector bundle (QIZ]* ® E, (hyh(a,—N)) one thus
has

R(hyh(a,—N)) = R(hpyh(a,N)) —=2Nwp ® Tp o <cri 0
U*
over U* for N > Nj. For any section s € H(U*, QZ* ® E), by Lemma 3.7 one has

V=100 108 I5(2) 4.0 < O
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where we omit h,, for simplicity. For any z € U*(r) where 0 < r < 1, one haslog |s(z)| ,7;(“ Nron <

0, and

).wp

4n
2 2
log |s(z)|h(a,_N)’wP < —n 7 NP f log |s(w)|h(a’_N)’devolg
| I 4

<lo |s(w)] dvol
(ﬂnlw2f (i )

log( fg; —I( )|h(a dvol)

z 1li=1 |w;?

<mau%fmwmm JYMWM|HuﬂwmeP

Q, Jj= ={+1
<logCy + logf IS(W)Iﬁ(a’N),devole

<log Gy +log||s||h aN)op

where Q, :={w e U" | |lw;—z;| < |Z—2’| fori < ¢€;|wi—z;| < % for i > ¢} and g is the Euclidean
metric. The first inequality is due to mean value inequality, and the second one is Jensen
inequality. Hence

|S(Z) |h,a)p

{
ﬂ _
Mmmwww{1mm w[ﬁﬂ%
ﬂ _
euMMNW-[P%m zdﬁm%

—a;=6
<@MWMWQTW“)
i=1

IA

for any 6 > 0 and some positive constant Cs depending on §. ]

3.5. A fine resolution for Dolbeault complex of Higgs bundles. Let (E, 6, h) be a tame
harmonic bundle on X — D, where (X, w) is a compact Kahler manifold and D = Zle D; is
a simple normal crossing divisor on D.

Let L be a line bundle on X equipped with a smooth metric k; so that V=1R(h;) > 0 and
has at least n — k positive eigenvalues'. Let P be a nef line bundle on X. Let o; be the section
H°(X, Ox(D;)) defining D;, and we pick any smooth metric h; for the line bundle Ox (D;) so
that |oj|p,(z) < 1 for any z € X. Write op := Hle o; € H(X, Ox(D)) and hp := ]—[f:1 h; the
smooth metric for Ox (D). Pick a positive constant N greater than Ny, which is the constant
in Proposition 3.5 so that (3.3.2) holds.

Given a smooth metric hp on P, note that for Z := L ® P|x- equiped with the metric

4

14
(3.5.1) hy = hihp | [loii - (= | 1oglail} )V,
i=1

i=1

ISuch a metrized line bundle (L, hy) is called k-positive in [SS85].



18 YA DENG AND FENG HAO

its curvature

4
(3.5.2) V=1R(hy) = V=1R(h1) + V=1R(hp) + Z 2V-1a;R(h;)
i=1

dlog|oi|? A dlog|o; 4

H h
(logloil2 )2 Z 1og|al|h >2

=1

+\/_NZ

Here R(h;) is the curvature of (ﬁX(Di), hl-).

Let 0 < y3(x) < - < yu(x) be eigenvalues of V=1R(h;) with respect to w. Set & :=
inf yi4+1(x) which is strictly positive by our assumption on V—=1R(h).

Note that for the prolongation °E on X of (E, 6, h) in § 3.2, by the semi-continuity of
parabolic Higgs bundles, there is a b = (by, ..., b;) € RL , so that one has ,E = °E.

<0’
Lemma 3.9. We can rescale h; by timing a positive small constant, take proper metric hp for
P and pick a € Rio and § > 0 small enough so that

(1) ai+bj+5<0fori=1,...,¢

(2) ai>6 fori=1,...,¢

(3) One has

(3.5.3) V=1R(hy) > V=1R(hy) — €10 > —¢10.

— _%
forer = 150
(4) The metric

(3.5.4) WaN = &0 + V=1R(hy)

is a Kchler metric when restricted on X* = X — D for e, = 1&-.

Proof. Note that (1), (2) are easy to made, and (4) is a consequence of (3). Let us explain
how to achieve (3). The possible negative contribution for V-1R(h ) only can come from

V—=1R(hp) + Z‘-)_ 2vV—-1a;R(h;) — NZI . (;(/)g_lff?) . As P is nef, one can take hp so that

V—1R(hp) > —58160 As N is fixed, we can replace h; by ¢ - h; for ¢ — 0% and let a;’s

small enough, so that Zizl 2V=1a;R(h Zl 1 (l\(/)g_lfgl 2 > —5510). O

. . . . 1 —0; -
We know that w, n is a complete Kéhler metric. Indeed, write h; = ¢ % in terms of the

trivialization D; N U = (z; = 0) of any admissible coordinate (U; z1, . . ., z,), one has
d dz; dz;
) = |&w + 2 —la-R + Rh +N —_ ! + 00;) A —l+8_'
an = (& Zl V-1, V=1R(hp)) Z g |Z|2 T e A (G de)

B Ni V=10d¢;
i=1 IOg |Z|12 + @i

From this local expression one can also see that wany ~ wp onany U*(r) for 0 < r < 1. We
also can show the following

Lemma 3.10. For the smooth metric hgn := h - H 1 ,Iza’ (= Hle log |0-i|}21,)N of E, it is
mutually bounded with h(a, N) defined in § 3.3 on any U*(r) foro<r<1.

Let us prove that such construction satisfies the positivity condition in Corollary 2.7.

Proposition 3.11. With the above notations, for any p + q > n + k, one has

€
(35.5) (V=1R(h2), Moy w1 Noar 2 51f G0
forany f € APIT;, and any x € X*.
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Proof. For any point x € X, one can choose local coordinate (zy, ..., z,) around x so that at
X, 0 = \/—_12?=1 dz; A dz; and V=1R(h ¢) = \/_Zl 1 Vidzi AN dz;, where y; < --- <y, are
eigenvalues of V—1R(h &) with respect to w. By (3.5.3) one has )7, >yi—¢e. LetAdy <--- < )L
be eigenvalues of V—1R(h.¢) with respect to wgn. Then A; = y
x € X*, one has
o <A< lfori=1,...,n
=k+1,...,n.

We can assume that p > ¢. Then

\/_R(hf) Awafo>waN = ZA +ZA A=A )lflwaN

=1
& ké‘l

> ((p-R 0= =) - —— =~ (= 9)IfL},

&) — €1 =y}
€2 €1

> (1-n(=2 s )i, 2 IR,

&) — €1 & — &

O

Remark 3.12. Let us mention that Lemma 3.9 and proposition 3.11 are indeed inspired by the
proof of Girbau vanishing theorem in [Dem12, Chapter VII, Theorem 4.2] and its logarithmic
generalization in [HLWY16, Theorem 4.1].

We equip E with the metric h,n and X* with the complete Kahler metric w, y having
the same growth as wp near D. Let Qg) (E)n be the sheaf on X (rather than on X*!) of

germs of locally L,, E-valued m-forms, for which D”(u) exists weakly as locally L?-forms.
Namely, for any open set U C X, we define

(3.5.6) L(E)U) = {u € L (U~ D,E) | D"u € L'(’;I(U - D,E)}.

Here we write 2(2)(E) instead of L) (E)han.wan

We also define 21()2()1( ) to be be the sheaf on X of germs of locally L,, E-valued (p, q)-
forms, for which both dp(u) exist weakly as locally L2-forms. Namely, for any open set

U c X, one has

a,N-Wa, N

for short.

(3.5.7) ME)U) = (u € LI} (U = D, E) | dpu € Lf(’é‘)’“(U - D,E)}
Note that for any admissible coordinate (U; zy, . . ., z,), as wg N ~ wp and hgx ~ h(a, N) on

any U*(r) for 0 < r < 1, one has
e (YU () = L) (U (1) Evayons CHENU™ (1) = LU° (). BNty
The following lemma will be crucial for us.

Lemma 3.13. Bm)(E) Bp+g= mﬂg;q(E)

Proof. For any x € D and any admissible coordinate (U; z, .. ., z,), we have

101h(an)wp = |Olhpp - e X@N)

where y(a, N) is defined in (3.3.1). By Theorem 1.5, one has
|9|h (a,N),wp = <C

for any C. Hence 0 is a bounded linear operator

pq p+lq
LU = D,E) —» 10,M(U - D, E),

The theorem follows from that D” = dg + 6. O
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Proposition 3.14. Let /™ (°E) be the sheaf on X of germs of smooth m-forms with values in
Op+g=mE ® Qf(’q(log D). One has the inclusion

™(°E) C EE’Z’) (E)
which is densely defined.

Proof. For any x € D, we pick an admissible coordinate (U;zy,...,z,) with DN U =
(z1...z¢ = 0) and a holomorphic frame v, ...,v, € I'(U, °E). By the definition of °E and
our choice of a in (2), one has |v,|, < C Hle |z;|~%*% foreacha = 1,...,r.

Write w; = logz; fori = 1,...,f and w; = z; for j = ¢ + 1,n. For the basis {dw; A
dwiir+171=m of @p+q:mQ§(’q(log D), on U*(r) with 0 < r < 1, one has

dw Adwilo, <C || (loglzil®)
ie(1U))N{1,....¢}

which have at most logarithmic growth. For any smooth section s € .&/™(°E)(U) with any
0 <r <1, wecan write s = ) 1+|/|=m.a fI"‘]dWI A dwj ® v, with {fI"‘]} smooth functions on
U. Hence one has

{
Islhop < C' [ [ 127
i=1
on any U*(r) with 0 < r < 1. Therefore,

{
Isl(@nyp < C' [ ] 1270 - e x@N) < ¢
i=1

where y(a, N) is defined in (3.3.1), and we use the fact that there is a constant C(N, 9)
depending on positive constants N and ¢ so that

log(—lz;1*)N < C(N, 8)|z|™°

when z; tends to 0. Hence

f |3|}21(a,N),deV°1wp < +00,
U*(r)

and since h(a, N) ~ hgn and wp ~ wg N on any U*(r) with 0 < r < 1, we conclude that

2
f 152 sy @V0liog y < +00.
U ()

Note that 6 : E — E ® QL. extends to 6 : °E — E ® Q}(log D), and Jg for E also extends
to the complex structure d: of °E, one thus can define D” = 9« + 0 : &/™(°E) —» /™' (E)
which extends the original dr + 6 over X*. Hence

s € 27 (E)(U*(r)).
which proves the theorem. O

Recall that one has D2 = 0. Let (Q(.z) (E), D”) be a complex of fine sheaves over X defined
by

’7 "

D" D D
(3.5.8) 53?2)(13) — 2(12) (E) — - — £} (E).
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By Proposition 3.14, there is a natural inclusion

(3.5.9)

T — 5 E® Ql(logD) — - — E@ QlL(ogD)

0 D” 1 D’/ J/ D// nl D/, D// 2n
LB = 2 (B) P > LB P )

and we are going to show that this morphism between two complexes are quasi-isomorphism.

We now recall a celebrated theorem (in a weaker form) by Demailly [Dem82, Théoréme
4.1], which enables us to solve the d-equation on weakly pseudo-convex Kihler manifold
(might not be complete). When the metric is complete, it is due to Andreotti-Vesentini
[AV65].

Theorem 3.15 (Demailly). Let (X, w) be a Kdhler manifold (w might not be complete), where
X possesses a complete Kihler metric (e.g. X is weakly pseudo-convex). Let E be a vector
bundle on X equipped with a smooth hermitian metric h so that

V=1RK(E) 2nak 0 ® T,
where ¢ > 0 is a positive constant. Assume that g € L?;)I(X, E) so that 8g = 0. Then there
exists f € L'Zg_l(X, E) sothat 0f = g and
IFI2, < g2,
This theorem by Demailly is used to solve the d-equation locally.

Proposition 3.16. For any x € X, there is an open set U C X (can be made arbitrary small)
containing x so that for any g € £ SI(E)(U) with q > 1 and 0g(g) = 0, there exists a section

fe Qfé;’_l(E)(U) so that s f = g.

P,
(2

Proof. If x ¢ D, then we can take an open set U C X—D containing x which is biholomorphic
to a polydisk, and the theorem follows from the usual L?>-Dolbeault lemma. Assume x € D.
Let (U;z1,...,z,) be an admissible coordinate around x. By Proposition 3.5, é?, = Tg* QF

equipped with the ¢"*-metric hyg, = h;lh(a, N) induced by h(a, N) and wp, satisfying
V=1R(hs,) 2nu wp ® T,

for any p = 0,...,n. Note that wplﬁ*(%) ~ wa,NlU*(%) and h(a, N)|U*(%) ~ ha,Nlﬁ*(%)- Hence
one has
~ 1 ~1
ng  frx _ 1P 7
(3-5~10) L(z)(U (E)’ gn—p)hgnfp,wp = L(z)(U (5),E)ha,N,a)a,N

forany p = 0,...,n. Forany g € L?é?(ﬁ*(%),gn—p)hgmp,wp with d(g) = 0, if ¢ > 1, by
Theorem 3.15, there is f € Lr(lg_l(ff*(%), é"n_p)hgn_p,wp so that 0 f = g. The proposition then
follows from (3.5.10), and U*(%) is the desired open set U in the proposition. O

Now we are ready to prove that the L?-complex is the desired fine resolution for our
Higgs bundle.

Theorem 3.17. The morphism between two complexes in (3.5.9) is quasi-isomorphism.

Proof. Pick any m € {0, ...,n}. We are going to show that i : ker 8/ Im 6§ — ker D”/Im D"
at ’E ® QY (log D) is an isomorphism. For any x € D, we pick an open set U > x as
in Proposition 3.16 and set U* = U — D. Indeed, U* = U*(%) where (U;z1,...,2,) is
an admissible coordinate around x and thus hany ~ h(a,N) and wsn ~ wp on U*. Pick
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any g € 53”‘ ( YU) = L(z)
g = Zp+q:m gp.q Where g, € sz’?(E)(U), and let gy be the largest integer for g so that

(U*, E)h(a,N),0p SO that D”g = 0. By Lemma 3.13, we can write

gpq = 0. If o = 0, then g = gmo and one has OEgmo = 0 and 0g,, o = 0. By the elliptic
regularity of d one concludes that g € T'(U*, Q7. ® E|y~). By Proposition 3.8, one has

{
9hhar < C- (] [ 12770
i=1

If we write g = 3 ;)= dw; ® e;, where (wy,...,w,) = (logzy,...,logzs, zp41,. .., 2,) and
e; € I'(U", E|ly+). Then
Glhor = D lerluldwilo, = € )" lerly
[I|=m [I]=m

Hence |eflp, < C” - (H _q |z O <. (H 1 |zi|%) by our choice of a in (1). As ,E is
defined via the increasing order of sections of E in (3.2.1), we conclude that e; € T'(U, E|y).
As pE = °E by our choice of b at the beginning of this subsection, one has e; € T'(U, E).
Hence g € T(U, Q¥ (log D) ® ‘E|y), which means that 1 is surjective.

Now we assume that go > 0 and p, is the largest integer for p so that g,, # 0. By
Lemma 3.13, we can decompose D”g into bidegrees, so that

8Egm—q0,qo =0
egm—qo,qo + aEgm—qOH,qo—l =0

99p0—1,m—p0+1 + gEgpo,m—po =0
Qgpo,m—Po =0

for which, the operators act in the sense of distribution. Hence gp—g,,q, € Qm D EYV(U)

with dggm-gy.q = 0. Applying Proposition 3.16, there is a section fi,_q, g1 € Lg) w02~ EY(U)
so that Ok fin-go.q0-1 = —9m—qo.qo- By Lemma 3.13, D" fr_q0 001 € L5, E)(U), and we define
9 =D fugyq-1*+9 € Q’")(E)(U). One thus has D”¢g’ = 0. erte g = Yp+g=m Jpq Where

Gy € 53P q(E)(U) Note that

/ _ 9 —
gm—qO,qo - 0Efm—qo,%—1 ~ 9Im—qo.q0 = 0

/ o
Im-qo+1.q0-1 = efm—CIoaQO—l + Im—qo+1,g0-1

A

/ —
gm—qo +2,q0—2 - gm_q0+2’q0_2

g;;O,m—po = 9po.,m—po
One can perform the same manner inductively to find f € ﬂg)'l(E)(U) so that gy = g +
D"f e Eg’)o (E)(U) so that D”go = 0. By the above argument, we know that gy € T'(U, Q¥ (log D)®

°Ely), which shows the surjectivity of 1.

Now we prove the injectivity of 1. Let g € T'(U, Q¥ (log D) ® *Ely) C Bg)(E)(U) so that

= D" f. Write f = Zp+q:m fp.q where f, 4 € 531()2;1( )(U). Then D" (fin.0+ fm-1.1) = g thanks
to the bidegree condition. Hence J f;,—1.1 = 0. Applying Proposition 3.16, there is a section
P10 € Qg;I’O(E)(U) so that ghm_10 = = frn-1.1. Then g = D" (fyo + fr11 + D" hpm_10) =
D" (fmo + Ohm—10) = O(fmo + Ohm-10) = 0(fmo)- The injectivity is thus proved.

When m > n, the exactness of D” can be proven in the same way. Let g € 2" )(E)( ) so

that D”g = 0. Applying Proposition 3.16 once again, we can find f € B’g 1(E)(U) so that
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D'f+gc€ Qnm "(E)(U). As (D" f + g) = 0, this implies that dg(D” f + ¢g) = 0, and by
Proposition 3.16 again one can find h € B?z’gn_n_l(E)(U) so that D”h = dgh = D" f + g. This
shows the exactness of D” when m > n. We complete the proof of the theorem. ]

3.6. Proof of the main theorem. In this subsection, we will prove the following vanish-
ing theorem for tame harmonic bundle.

Theorem 3.18. Let (X, w) be a compact Kihler manifold of dimension n and let D be a simple
normal crossing divisor on X. Let (E, 4E, 0) be the parabolic Higgs bundle on X induced by a
tame harmonic bundle (E, 0, h) on X* = X — D. Let L be a line bundle on X equipped with a
smooth metric hy so that V=1R(hy) > 0 and has at least n — k positive eigenvalues. Let P be a
nef line bundle on X. Then

H"™ (X, (E ® Q% (log D), 0) ® L& P) =
foranym > n+k.

Proof. We will use the notations in § 3.5. Recall that (X*, w4 n) is a complete Kéhler mani-
fold. Write . := L ® P|x- and we equip it with the metric g = hy hp where hp is properly
chosen as Lemma 3.9. Then g is the restriction to X* of a smooth metric on X. We intro-
duce a new Higgs bundle (E, 0, ﬁ) =(E®.Z,0914,h(a,N) - g). We still use the notation

"= 05 + 0 abusively, and D”* denotes its adjoint with respect to h. We will apply Corol-
lary 2.7 to solve D”-equation for this new Higgs bundle.

Note that h(a, N)g = hh by (3.5.1) and Lemma 3.10. By proposition 3.11, the metrized
line bundle (.Z, h &) satisfies the condition in Corollary 2.7 when m > n + k. Hence by
Corollary 2.7 for any section g = LT (X", E)fl,wa,N’ if D"g = 0 and m > n + k, there exists

R (2)
fe L?’;;l(X*,E);l’wa,N so that
Dllf‘ — g.
Let Q’Z)(E)ﬁ,wa,w be the sheaf on X (rather than on X*!) of germs of locally Ly, E-valued

m-forms, for which both D”(u) (as a distribution) exist weakly as locally L2-forms. Namely,
for any open set U C X, one has

(3.6.1) m(E)U) ={ue Ll (U-D, E) LI Due L (U-D, E)wun’

(2) (2) @)

Then the above argument proves that the cohomology H' of the complex of global sections

of the sheaves (8(’2) (E);Wa,N, D) vanishes for m > n + k.

As g is smooth over the whole X, the metric h ~ h(a, N) near D (fix any trivialization of
L ® P). Hence the natural inclusion
(3.6.2)

EQLoP 5 EoL®P®x(logD) & ... & E®L®P®Q(logD)

e (B);,  —2s 0l (E); D l D E — e
2)(E) 2)(E) > L) )i o v = @ )i o v

h,&)a,N h,wa,N

N L.
4

is thus also a quasi-isomorphism by Theorem 3.17.
As the complex (’3('2) (E);l,wa’ »D”) is a fine sheaf, its cohomology computes the hyper-

comology of the complex (°E ® L ® Q5 (log D), 6). We thus conclude that H"(X, (‘E® L ®
Q% (log D), é)) = 0 for m > n + k. The theorem is proved. O

Remark 3.19. Let us show how to derive the log Girbau vanishing theorem in [HLWY16,
Corollary 1.2] from Theorem A. With the same setting as Theorem A, let (E, 6, h) := (Ox_p, 0, h)
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where h is the canonical metric on the trivial line bundle &x_p. According to the prolon-
gation of (E, 6, h) defined in § 3.2, one has (°E, ) = (Ox,0). Hence the Dolbeault complex
in (0.1.1)

Dol(‘E, ) = Ox — QL(log D) = - - = Q" (log D)
which is a direct sum of sheaves of logarithmic p-forms shifting p places to the right:

Dol(‘E, ) = &,_, Q% (log D)[p],

where Qf((log D)[p] is the obtained by shifting the single degree complex Qi(log D) in de-
gree p. Hence if m > n + k, by Theorem 3.18 one has

0 = H" (X, Dol(’E.0) ® L ® P) = @ H™ (X, @ (log D) ® P ® N[p])
= @) H"P(X,Q%(logD) ® P® N).

We thus conclude that
HY(X, Q% (logD) ® P ® N)
if p + ¢ > n + k. This is the log Girbau vanishing theorem by Huang-Liu-Wan-Yang.

3.7. Vanishing theorem for parabolic Higgs bundles. Let X be a complex projective
manifold and let D be simple normal crossing divisor on X. For a parabolic Higgs bundle
(E, 4E, 0) on (X, D), its parabolic Chern classes, denoted by para-c;(E), is the usual Chern
class of °E with a modification along the boundary divisor D (see, e.g., [AHL19, §3] for
more details). With a polarization, i.e., an ample line bundle H on X, the parabolic degree
para-deg(E) of (E, 4E, 0) is defined to be para-c;(E) - H" . We say (E, 4E, 0) slope stable
if for any coherent torsion free subsheaf V of °E, with 0 < rankV < rank’E = rankE and
0(V) C V ® Q) (log D), the condition

para-deg(V) - para-deg(E)
rank(V) rank(FE)

is satisfied, where V carries the induced the parabolic structure from (E, 4E, 0), i.e. ,V :=
V N 4E. A parabolic Higgs bundle (E, 4E, 0) is poly-stable if it is a direct sum of slope stable
parabolic Higgs bundles. By [IS07], (E, 4E, 0) is called locally abelian if in a Zariski neigh-
borhood of any point x € X there is an isomorphism between the underlying parabolic
vector bundle (E, 4E) and a direct sum of parabolic line bundles.

By the celebrated Simpson-Mochizuki correspondence [Moc09, Theorem 9.4], a parabolic
Higgs bundle (E, 4E, 6) on (X, D) is poly-stable with trivial parabolic degrees and locally
abelian if and only if it is induced by a tame harmonic bundle over X — D defined in § 3.2.
Based on this deep theorem, our theorem can thus be restated as follows.

Corollary 3.20. Let (E, 4E, 0) be poly-stable parabolic Higgs bundle on (X, D) with trivial
parabolic degrees which is locally abelian. Let L be a line bundle on X equipped with a smooth

metric hy, so that its curvature V=1R(hr) > 0 and has at least n — k positive eigenvalues. Let
P be a nef line bundle on X. Then for the weight 0 filtration °E of (E, 4E, 0), one has

H™ (X, (E ® Q%(logD),0) ® L& P) =0
foranym > dim X + k.

This above corollary generalizes [AHL19, Corollary 7.3] in which they further assume
that L is ample.
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