
VANISHING THEOREM FOR TAME HARMONIC BUNDLES
VIA L2-COHOMOLOGY

YA DENG AND FENG HAO

Abstract. Using L2
-methods, we prove a vanishing theorem for tame harmonic bundles

over quasi-Kähler manifolds in a very general setting. As a special case, we give a completely

new proof of the Kodaira type vanishing theorems for Higgs bundles due to Arapura and

for parabolic Higgs bundles by Arapura, Li and the second named author. To prove our

vanishing theorem, we construct a �ne resolution of the Dolbeault complex for tame har-

monic bundles via the complex of sheaves of L2
-forms, and we establish the Hörmander

L2
-estimate and solve ( ¯∂E + θ )-equations for the Higgs bundle (E,θ ).
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0. Introduction

0.1. Main result. Let (X ,ω) be a compact Kähler manifold and let D be a simple normal

crossing divisor on D. Let (E,θ ,h) be a tame harmonic bundle over X − D (see § 1.1 for

precise de�nition), and let
�E be the subsheaf of ι∗E consisting of sections whose norms
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with respect to h have sub-polynomial growth, where ι : X − D ↪→ X is the inclusion. By

Simpson-Mochizuki,
�E is a locally free coherent sheaf, and (E,θ ) extends to a logarithmic

Higgs bundle

θ :
�E → �E ⊗ Ω1

X (logD)

such that

θ ∧ θ = 0.

We refer to § 3.2 for more details.

In this paper, we prove the following vanishing theorem.

Theorem A (=Theorem 3.18). Let (X ,ω) be a compact Kähler manifold of dimension n, and
letD be a simple normal crossing divisor onX . Let (E,θ ) be a tame harmonic bundle onX −D,
and let (�E,θ ) be the extension of (E,θ ) on X as introduced above. Let L be a line bundle on
X equipped with a smooth metric hL so that its curvature

√
−1R (hL) ≥ 0 and has at least

n − k positive eigenvalues. Let P be a nef line bundle on X . Then for the following (Dolbeault)
complex of sheaves

Dol(�E,θ ) := �E
∧θ
−−→ �E ⊗ Ω1

X (logD)
∧θ
−−→ · · ·

∧θ
−−→ �E ⊗ Ωn

X (logD)(0.1.1)

the hypercohomology
Hi

(
X ,Dol(�E,θ ) ⊗ L ⊗ P

)
= 0

for any i > n + k .

Theorem A seems new even if the tame harmonic bundle (E,θ ,h) comes from a complex

variation of polarized Hodge structures. It indeed interpolates the Kodaira-Akizuki-Nakano

type vanishing theorems for parabolic Higgs bundles [AHL19, Corollary 7.3] by Arapura,

Li and the second named author (in the case that L is ample, see Corollary 3.20), and the log

Girbau vanishing theorem by Huang-Liu-Wan-Yang [HLWY16, Corollary 1.2] (in the case

that (E,θ ) = (OX−D, 0), see Remark 3.19). We stress here that our proof of Theorem A is

essentially self-contained (in particular we do not apply the deep Simpson-Mochizuki cor-

respondence) and is purely in characteristic 0 (since we are working on Kähler manifolds),

while [AHL19] applies heavy machinery (e.g. the complicated construction of parabolic

Higgs bundles over quasi-projective manifold, moduli spaces of parabolic Higgs bundles by

Yokogawa and the Biswas correspondence) to reduce the problem to the celebrated van-

ishing theorem by Arapura [Ara19] whose proof is in characteristic p (see § 0.3 for more

details). The main technique in the proof of Theorem A is a new application of L2
-methods

to tame harmonic bundles, and we hope that it can bring some new input in the study

of L2
-cohomology for Higgs bundles. Let us also mention a few byproducts of our proof:

we construct explicitly a complex of sheaves of L2
-forms which is quasi-isomorphic to the

Dolbeault complex (0.1.1) (see Theorem 3.17) in a similar manner (but using di�erent met-

ric) as [Zuc79] in which Zucker did this for variation of polarized Hodge structures over a

quasi-projective curve; we also establish the Hörmander L2
-estimate and solvability criteria

for ( ¯∂E +θ )-equations for general Higgs bundles (E,θ ) (see Theorem 2.6 and Corollary 2.7).

If we apply the Simpson-Mochizuki correspondence [Sim90, Moc09] for parabolic Higgs

bundles on projective manifolds to Theorem A, we can obtain the following vanishing the-

orem for parabolic Higgs bundles.

Corollary B (=Corollary 3.20). Let X be a complex projective manifold of dimension n, and
let D be simple normal crossing divisor on X . Let (E, aE,θ ) be poly-stable parabolic Higgs
bundle on (X ,D) with trivial parabolic degrees which is locally abelian. Let L be a line bundle
on X equipped with a smooth metric hL so that its curvature

√
−1R (hL) ≥ 0 and has at least

n − k positive eigenvalues. Let P be a nef line bundle on X . Then for the weight 0 �ltration �E
of (E, aE,θ ), one has

Hi
(
X ,Dol(�E,θ ) ⊗ L ⊗ P

)
= 0
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for any i > n + k .

For the notions in Corollary B we refer to §§ 3.1 and 3.7 for more details.

0.2. Idea of the proof. Let us brie�y explain the main idea of our proof of Theorem A.

We �rst construct a complex of L2
�ne sheaves which is quasi-isomorphic to the Dolbeault

complex

(0.2.1) Dol(E,θ ) := �E �E ⊗ ΩX (logD) · · · �E ⊗ Ωn
X (logD)

θ θ θ

For a given a Kähler metric on X − D, and a smooth metric д for E over X − D, we let

Lm
(2)
(X ,E)д,ω be the sheaf on E of germs of E-valuedm-forms σ with measurable coe�cients

so that |σ |2д,ω is locally integrable and ( ¯∂ + θ ) (σ ) exists weakly as a locally L2 E-valued

(m + 1)-forms. Here the L2
norms |σ |2д,ω are induced by ω on di�erential forms and by д on

elements in E. Since ( ¯∂ + θ )2 = 0, it thus gives rise to a complex of �ne sheaves

L
0

(2) (X ,E)д,ω
¯∂+θ
→ · · ·

¯∂+θ
→ L2n

(2) (X ,E)д,ω(0.2.2)

As the harmonic metric h is a canonical metric on the E, it is quite natural to make the

choice that д is the harmonic metric h and ω is a Poincaré-type metric ωP over X − D
as [Zuc79, CKS87, KK87]. However, even for the case when (E,θ ) comes from a varia-

tion of polarized Hodge structures over X − D, it turns out to be a quite di�cult prob-

lem that (L•
(2)
(X ,E)h,ωP ,

¯∂ + θ ) is quasi isomorphic to Dol(E,θ ), and one essentially can-

not avoid the delicate norm estimate for Hodge metrics near D in [Sch73, Kas85, CKS86]

(see e.g. [Zuc79, JYZ07]). In this paper, we make a slight perturbation h(a,N ) of the har-

monic metric h (see Lemma 3.10 for more details) as [Moc02, §4.5.3] so that h(a,N ) will

degenerate mildly, albeit the norm of harmonic metric h for
�E is of sub polynomial growth.

This construction indeed brings us several advantages (among others): we can prove that

(L•
(2)
(X ,E)h(a,N ),ωP ,

¯∂ + θ ) is indeed quasi-isomorphic to Dol(E,θ ), and the negative contri-

bution of the curvature (E,θ ,h(a,N )) is small enough which can be absorbed completely

by the curvature

√
−1R (hL) of any (partially) positive metrized line bundle (L,hL).

Once this �ne resolution of Dol(E,θ ) is established, to prove Theorem A (we assume

now P = OX for simplicity), the hypercohomology of Dol(E,θ ) ⊗ L is isomorphic to the

cohomology of the complex of global sections of (0.2.2)

(L•(2) (X − D,E ⊗ L|X−D )h(a,N )·hL ,ωP ,D
′′),(0.2.3)

where D′′ := ¯∂E⊗L + θ ⊗ 1L satisfying D′′2 = 0. We then reduce the proof of Theorem A

to the vanishing of L2
-cohomology of (0.2.3) for i > dimX + k . To prove this, we �rst

generalize the L2
-estimate by Hörmander, Andreotti-Vesentini, Skoda, Demailly and others

to Higgs bundles. Roughly speaking, we prove that under certain curvature conditions for

Higgs bundles (E,θ ), we can solve the D′′-equation as the
¯∂-equation in a similar way (see

Theorem 2.6 and Corollary 2.7). We then choose the perturbation h(a,N ) of h carefully

so that such required curvature condition can be ful�lled and it enables us to prove the

vanishing result for the L2
-cohomology of (0.2.3). This idea of solving D′′-equation for

Higgs bundles using L2
-method seems a new ingredient as we are aware of.

0.3. Previous results. For X a complex projective manifold with a simple normal cross-

ing divisor D, Arapura [Ara19] gives a vanishing theorem for semistable Higgs bundles

(E,θ ) over X −D with trivial parabolic structure, trivial Chern classes and nilpotent Higgs

�eld θ . In the spirit of the algebraic proof of the Kodaira vanishing theorem by Deligne-

Illusie [DI87], the proof of Arapura’s vanishing theorem is reduced to the mod p-setting

and boils down to a periodic sequence of Higgs bundles (Ei ,θi ) = Bi (E,θ ) through an oper-

ator B raised from the absolute Frobenius morphism, which is due to Lan-Sheng-Yang-Zuo
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[LSZ19,LSYZ13] and Langer [Lan15]. The dimension of the cohomologyHi (X ,Dol(Ei ,θi )⊗

Lp
i
) is non-decreasing for {(Ei ,θi )}, then Arapura’s vanishing theorem follows from Serre’s

vanishing theorem. With his vanishing theorem, Arapura reproves the Saito’s vanishing

theorem (see, e.g. Popa [Pop16]) for polarized variations of Hodge structures with unipo-

tent monodromy on the complement of a normal crossing divisor on any complex projec-

tive manifold. In the following up article [AHL19], Arapura’s vanishing theorem for Higgs

bundles is generalized to parabolic Higgs bundles coming from tame harmonic bundles over

X −D, especially the nilpotency condition for Higgs �eld θ is get rid of, which is inevitable

due to technical reasons in [Ara19]. Also, the parabolic structures in the generalized van-

ishing theorem are allowed to be nontrivial and the jumping numbers of the parabolic Higgs

bundles are real. Two main steps of the proof in [AHL19] reduce the generalized vanishing

theorem to Arapura’s vanishing theorem [Ara19]. After perturbing the jump numbers to

rational numbers and using Biswas’s correspondence [Bis97], one reduces the proof to the

case in which the Higgs bundles have trivial parabolic structures. Another reduction step is

using the C∗-action on the moduli space of parabolic Higgs bundles, and the properness of

the Hitchin �bration due to Yokogawa [Yok93] to reduce the proof to the case with parabolic

Higgs bundle admitting nipotent Higgs �eld.
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Notations and conventions

• A couple (E,h) is a Hermitian vector bundle on a complex manifold X if E a holomorphic

vector bundle on X equipped with a smooth hermitian metric h.
¯∂E denotes the complex

structure of E, and we sometimes simply write
¯∂ if no confusion arises.

• Two hermitian metrics h and
˜h of a holomorphic vector bundle on X if mutually bounded if

C−1h ≤ ˜h ≤ Ch for some constant C > 0, and we shall denote by h ∼ h′.
• For a hermitian vector bundle (E,h) on a complex manifold, R (h) denotes its Chern curva-

ture.

• For a Higgs bundle (E,h) with a smooth metric h on a complex manifold, F (h) := R (h) +
[θ ,θ ∗

h
], where θ ∗

h
is the adjoint of θ with respect to h.

• ∆ denotes the unit disk in C.

• The complex manifoldX in this paper are always assumed to be connected and of dimension

n.

• Throughout the paper we always work over the complex number �eld C.

1. Technical preliminary

1.1. Higgs bundle and tame harmonic bundle. In this section we recall the de�nition

of Higgs bundles and tame harmonic bundles. We refer the readers to [Sim88,Sim90,Sim92,

Moc02, Moc07] for further details.

De�nition 1.1. Let X be a complex manifold. A Higgs bundle on X is a pair (E,θ ) where

E is holomorphic vector bundle with
¯∂E its complex structure, and θ : E → E ⊗ Ω1

X is a

holomorphic one form with value in End(E), say Higgs �eld, satisfying θ ∧ θ = 0.
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Let (E,θ ) be a Higgs bundle over a complex manifoldX . WriteD′′ := ¯∂E+θ . ThenD′′2 = 0.

Suppose h is a smooth hermitian metric of E. Denote by ∂h + ¯∂E the Chern connection with

respect to h, and θ ∗
h

be the adjoint of θ with respect to h. Write D′
h

:= ∂h + θ
∗
h
. The metric h

is harmonic if the operator Dh := D′
h
+ D′′ is integrable, that is, if D2

h
= 0.

De�nition 1.2 (Harmonic bundle). A harmonic bundle on a complex manifoldX is a Higgs

bundle (E,θ ) endowed with a harmonic metric h.

Let X be an n-dimensional complex manifold, and let D be a simple normal crossing

divisor.

De�nition 1.3. (Admissible coordinate) Letp be a point ofX , and assume that {Dj }j=1,...,` be

components ofD containingp. An admissible coordinate aroundp is the tuple (U ; z1, . . . , zn;φ)
(or simply (U ; z1, . . . , zn ) if no confusion arises) where

• U is an open subset of X containing p.

• there is a holomorphic isomorphism φ : U → ∆n
so that φ (Dj ) = (zj = 0) for any

j = 1, . . . , `.

We shall writeU ∗ := U −D,U (r ) := {z ∈ U | |zi | < r , ∀i = 1, . . . ,n} andU ∗(r ) := U (r )∩U ∗.

For any harmonic bundle (E,θ ,h), let p be any point of X, and (U ; z1, . . . , zn ) be an ad-

missible coordinate around p. On U , we have the description:

θ =
∑̀
j=1

fjd log zj +
n∑

k=`+1

дkdzk(1.1.1)

De�nition 1.4 (Tameness). Let t be a formal variable. We have the polynomials det( fj − t ),
and det(дk − t ), whose coe�cients are holomorphic functions de�ned over U ∗. When the

functions can be extended to the holomorphic functions over U , the harmonic bundle is

called tame at p. A harmonic bundle is tame if it is tame at each point.

Recall that the Poincaré metric ωP on (∆∗)` × ∆n−`
is described as

ωP =
∑̀
j=1

√
−1dzj ∧ dz̄j

|zj |2(log |zj |2)2
+

n∑
k=`+1

√
−1dzk ∧ dz̄k
(1 − |zk |2)2

.

Note that

ωP = −
√
−1∂∂ log

( ∏̀
j=1

(− log |zj |
2) ·

n∏
k=`+1

(1 − |zk |
2)

)
.

For the tame harmonic bundle, we have the following crucial norm estimate for Higgs

�eld θ due to Simpson [Sim90] for the one dimensional case and Mochizuki [Moc07, Lemma

8.3] in general.

Theorem 1.5. Let (E,θ ,h) be a tame harmonic bundle. Let fj ,дk be the matrix-valued holo-
morphic functions as in De�nition 1.3. Then there exists a positive constant C > 0 satisfying
that

| fj |h ≤ C, for j = 1, . . . , `;

|дk |h ≤ C, for k = ` + 1,n.

In other words, the norm

|θ |h,ωP ≤ C
∑̀
j=1

(− log |zj |
2)

holds over someU ∗(r ) for some constant C > 0 and 1 < r � 1. �
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1.2. Curvature property of Higgs bundles. Suppose now (E,θ ) is a Higgs bundle of

rank r equipped with a metric h over a Kähler manifold (X ,ω) of dimension n .

We make the following assumption for (E,θ ,h) throughout this section .

Assumption 1.6. ¯∂Eθ
∗
h
= 0.

Let us denote byDh := D′
h
+D′′ a connection and F (h) := D2

h
. Assumption 1.6 is equivalent

to that ∂hθ = 0. Hence

F (h) = D2

h = [D′h,D
′′
] = R (h) + [θ ,θ ∗] ∈ A1,1(X , End(E)),(1.2.1)

where R (h) := (∂h + ¯∂E )
2
. Moreover, one can easily see that (

√
−1F (h))∗ =

√
−1F (h). In

other words,

√
−1F (h) is a (1, 1)-form with Herm(E)-value, where Herm(E) is the hermitian

endomorphism of (E,h).
By Simpson [Sim88], one has the following Kähler identity:

√
−1[Λω ,D

′′
] = (D′h )

∗
(1.2.2)

√
−1[Λω ,D

′
h] = −(D′′)∗(1.2.3)

where (D′
h
)∗ and (D′′)∗ are the formally adjoint operators ofD′

h
andD′′with respect toh and

ω, and Λω is the adjoint operator of ∧ω with respect to Hodge inner product on di�erential

forms. De�ne the Laplacians

∆′ = D′hD
′∗
h + (D′h )

∗D′h
∆′′ = D′′(D′′)∗ + (D′′)∗D′′

A computation can easily derive the following equality.

Lemma 1.7 (Bochner-Kodaira-Nakano identity for Higgs bundles).

∆′′ = ∆′ + [

√
−1F (h),Λω](1.2.4)

Proof. By (1.2.3), one has

∆′′ = D′′(D′′)∗ + (D′′)∗D′′ = −
√
−1[D′′, [Λω ,D

′
h]].

By the Jacobi identity, one has

∆′′ =
√
−1[D′h, [Λω ,D

′′
]] −
√
−1[Λω , [D

′
h,D

′′
]]

(1.2.2)

= [D′h, (D
′
h )
∗
] + [

√
−1[D′h,D

′′
],Λω]

(1.2.1)

= ∆′ + [

√
−1F (h),Λω],

which is the desired equality. �

1.3. Notions of positivity forHiggs bundles. Let (E,θ ) be a Higgs bundle endowed with

a smooth metric h, which satis�es assumption 1.6. For any x ∈ X , let e1, . . . , er be a frame

of E at x , and let e1, . . . , er be its dual in E∗. Let z1, . . . , zn be a local coordinate centered at

x . We write

F (h) = R (h) + [θ ,θ ∗h] = R
β

j ¯kα
dzj ∧ dz̄k ⊗ e

α ⊗ eβ

Set Rj ¯kα ¯β := hγ ¯βR
γ

j ¯kα
, where hγ ¯β = h(eγ , eβ ). F (h) is called Nakano semi-positive at x if∑

j,k,α ,β

Rj ¯kα ¯βu
jαukβ ≥ 0

for any u =
∑

j,α u
jα ∂
∂zj
⊗ eα ∈ (T 1,0

X ⊗ E)x . F (h) is called Gri�ths semi-positive at x if∑
j,k,α ,β

Rj ¯kα ¯βξ
jζ αξkζ β ≥ 0
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for any ξ =
∑

j ξ
j ∂
∂zj
∈ T 1,0

X ,x and any ζ =
∑
α ζ

αeα ∈ Ex . (E,θ ,h) is called Nakano (resp.

Gri�ths) semipositive if F (h) is Nakano (resp. Gri�ths) semi-positive at every x ∈ X .

When θ = 0, this reduces to the same positivity concepts in [Dem12, Chapter VII, §6] for

vector bundles.

We write

F (h) ≥Nak λ(ω ⊗ 1E ) for λ ∈ R

if ∑
j,k,α ,β

(Rj ¯kα ¯β − λωj ¯khα ¯β ) (x )u
jαukβ ≥ 0

for any x ∈ X and any u =
∑

j,α u
jα ∂
∂zj
⊗ eα ∈ (T 1,0

X ⊗ E)x . We denote by

F (h) ≥Gri λ(ω ⊗ 1E )

if ∑
j,k,α ,β

(Rj ¯kα ¯β − λωj ¯khα ¯β ) (x )ξ
jζ αξkζ β ≥ 0

for any x ∈ X , any ξ =
∑

j ξ
j ∂
∂zj
∈ T 1,0

X ,x and any ζ =
∑
α ζ

αeα ∈ Ex . A Higgs bundle is

Gri�ths semi-positive (resp. semi-negative) if it is Nakano positive (resp. semi-negative).

Lemma 1.8. Let (E,h) be a hermitian vector bundle on a Kähler manifold (X ,ω). If there is
a positive constant C so that |R (h) (x ) |h,ω ≤ C for any x ∈ X , then

Cω ⊗ 1E ≥Nak R (h) ≥Nak −Cω ⊗ 1E

Proof. For any x ∈ X , let z1, . . . , zn be a local coordinate centered at x so that

ωx =
√
−1

n∑
`=1

dz` ∧ dz̄`

Let e1, . . . , er be a local holomorphic frame of E which is orthonormal at x . Write

R (h) = R
β

j ¯kα
dzj ∧ dz̄k ⊗ e

α ⊗ eβ .

Then Rj ¯kα ¯β (x ) = R
β

j ¯kα
(x ), and we have∑

j,k,α ,β

|Rj ¯kα ¯β (x ) |
2 = |R (h) (x ) |2h,ω ≤ C2.

Hence for any u =
∑

j,α u
jα ∂
∂zj
⊗ eα ∈ (T 1,0

X ⊗ E)x , one has

|
∑
j,k,α ,β

Rj ¯kα ¯β (x )u
jαukβ |2 ≤

∑
j,α

|
∑
k,β

Rj ¯kα ¯β (x )u
jαukβ |2

≤
∑
j,α

(
∑
k,β

|Rj ¯kα ¯β (x )u
jα |2) · (

∑
k,β

|ukβ |2)

= |u |2h,ω ·
∑
k,β

(
∑
j,α

|Rj ¯kα ¯β (x )u
jα |2)

≤ |u |2h,ω ·
∑
k,β

(
∑
j,α

|Rj ¯kα ¯β (x ) |
2) (

∑
j,α

|u jα |2)

≤ |u |4h,ω ·
∑
j,k,α ,β

|Rj ¯kα ¯β (x ) |
2 ≤ |u |4h,ω · |R (h) |

2

h,ω .

Hence one has

−C |u |2h,ω ≤
∑
j,k,α ,β

Rj ¯kα ¯β (x )u
jαukβ ≤ C |u |2h,ω
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The lemma is proved. �

The following easy fact will be useful in this paper.

Lemma 1.9. Let (E1,h1) and (E2,h2) are two hermitian vector bundles over a Kähler manifold
(X ,ω) such that |R (h1) (x ) |h1,ω ≤ C1 and |R (h2) (x ) |h2,ω ≤ C2 for all x ∈ X . Then for the
hermitian vector bundle (E1 ⊗ E2,h1h2), one has

|R (h1h2) (x ) |h1h2,ω ≤

√
2r2C

2

1
+ 2r1C

2

2

for all x ∈ X . Here ri := rankEi .

2. L2
-method for Higgs bundles

2.1. A quick tour for the simplest case. In this subsection, we assume that (E,θ ,h) is

a harmonic bundle over a projective manifold X . We will show how to apply Bochner

technique to give a simple and quick proof of Theorem A in the case L is ample. The main

goal of this subsection is to show the general strategy and we will discuss how to generalize

these ideas to prove Theorem A.

For a Higgs bundle (E,θ ) over a projective manifold X of dimension n, one has the fol-

lowing holomorphic Dolbeault complex

Dol(E,θ ) := E
∧θ
−−→ E ⊗ Ω1

X

∧θ
−−→ · · ·

∧θ
−−→ E ⊗ Ωn

X(2.1.1)

By Simpson [Sim92], the complex of C∞ sections of E

A 0(E)
D ′′

−−→ A 1(E)
D ′′

−−→ · · ·
D ′′

−−→ A 2n (E)(2.1.2)

gives a �ne resolution of the above holomorphic Dolbeault complex. Indeed, it can be

proven easily from the Dolbeault lemma. Here A m (E) is the sheaf of germs of smooth m-

forms with value in E. Hence the cohomology of complex of its global sections

(
A•(E),D′′

)
computes the hypercohomology H•

(
X ,Dol(E,θ )

)
.

Suppose now (Ẽ, ˜θ ) is a stable Higgs bundle with vanishing Chern classes. By the Simp-

son correspondence, there is a unique (up to a constant rescaling) hermitian metric
˜h over

Ẽ so that the curvature R (Ẽ, ˜h) = 0. Assume that L is an ample line bundle on X equiped

with a smooth metric hL so that its curvature tensor

√
−1R (L,hL) is a Kähler form ω.

Let us de�ne a new Higgs bundle (E,θ ) := (Ẽ⊗L, ˜θ ⊗1). We introduce a hermitian metric

h on E de�ned by h := ˜h ⊗ hL. One can easily check that (E,θ ,h) satis�es Assumption 1.6

and the curvature

√
−1F (E,h) :=

√
−1R (E,h) +

√
−1[θ ,θ ∗] =

√
−1R (L,hL) ⊗ 1E = ω ⊗ 1E .(2.1.3)

By the Hodge theory, for each i ∈ Z>0, we know that the space of harmonic forms

H i
:= {α ∈ Ai (E) | ∆′′α = 0}

is isomorphic to the cohomology H i
(
A•(E),D′′

)
' Hi

(
X ,Dol(E,θ )

)
.

Theorem 2.1 (Theorem A in the case that D = ∅ and L is ample). With the notations in
this subsection, Hi

(
X ,Dol(Ẽ, ˜θ ) ⊗ L

)
= Hi

(
X ,Dol(E,θ )

)
= 0 for i > n.

Proof. Note that Dol(E,θ ) = Dol(Ẽ, ˜θ ) ⊗ L. It su�ces to prove that H i = 0 for i > n. We

will prove by contradiction. Let us take the Kähler form ω :=
√
−1R (L,hL). Assume that

there exists a non-zero α ∈ H i
. Then by Lemma 1.7, one has

0 = ∆′′α = ∆′α + [

√
−1F (E,h),Λω]α(2.1.4)
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An integration by parts yields

〈∆′α ,α〉h,ω = ‖D
′
hα ‖

2

h,ω + ‖ (D
′
h )
∗α ‖2h,ω > 0.

Hence

0 >
∫
X
〈[
√
−1F (E,h),Λω]α ,α〉h,ωdVolω

(2.1.3)

=

∫
X
〈[ω ⊗ 1,Λω]α ,α〉h,ωdVolω

=

∫
X
(i − n) |α |h,ωdVolω > 0

for i > n. HeredVolω := ωn

n!
denotes the volume form of (X ,ω). Hence the contradiction. �

Hence the above proof inspires us that, to prove Theorem A in full generality, we shall

�nd a ‘proper’ complex of �ne sheaves which is quasi-isomorphic to Dol(E,θ ), so that its

cohomology of global sections can be computed explicitly. Inspired by the work [Zuc79,

DPS01,HLWY16], we will consider the L2
-complex as the candidate for this complex of �ne

sheaves. However, instead of solving
¯∂-equation for vector bundles to prove the vanishing

theorem, we shall consider L2
-estimate and solvability criteria of ( ¯∂E + θ )-equations for

Higgs bundles (E,θ ). This is the main content of next subsection.

2.2. Hörmander L2-estimate for Higgs bundles. Solvability criteria for
¯∂-equations on

complex manifolds are often described as cohomology vanishing theorems. It is essentially

based on the abstract theory of functional analysis. Since the Kähler identities (1.2.2) and

(1.2.3) hold for Higgs bundles, it inspires us that the following principle should hold.

Principle. The package of L2-estimate by Hörmander, Andreotti-Venssetti, Bombieri, Skoda,
Demailly et. al. should hold without modi�cation for Higgs bundles, provided that the D′′ is
used in place of ¯∂ and thatm-forms are used instead of (p,q)-forms.

In this subsection we prove that for Higgs bundles over a complete Kähler manifold under

certain curvature condition, one can solve the D′′-equation in the same vein as [Dem12,

Chapter VIII, Theorem 4.5]. We follow the standard method ofL2
estimate as that in [Dem12,

Chapter VIII], and we provide full details for completeness sake.

Let us denote by Am (X ,E) (resp. Ap,q (X ,E)) the set of smooth E-valued m-forms (resp.

(p,q)-forms) on X , and denote by Am
0
(X ,E) (resp. A

p,q
0
(X ,E)) the set of smooth E-valued

m-forms (resp. (p,q)-forms) on X with compact support over the Kähler manifold (X ,ω).
The pointwise length of u ∈ Am (X ,E) with respect to the �ber metric induced by h and

ω, is denoted by |u |h,ω . The pointwise inner product of u and v is denoted by 〈u,v〉h,ω , or

simply by 〈u,v〉. Then the L2
-norm of u denoted by ‖u‖h,ω , or simply by ‖u‖, is de�ned as

the square root of the integral

‖u‖2 :=

∫
X
|u |2h,ωdVolω

where dVolω := ωn

n!
, which is �nite if u ∈ Am

0
(X ,E). The inner product of u and v associated

to this norm is de�ned by

〈〈u,v〉〉h,ω :=

∫
X
〈u,v〉h,ωdVolω

which is simply denoted by 〈〈u,v〉〉. Note that the Hodge decompositionAm
0
(X ,E) = ⊕p+q=mA

p,q
0
(X ,E)

is orthogonal with respect to this inner product 〈〈•, •〉〉.
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We shall denote by Lm
(2), loc

(X ,E) (resp. L
p,q
(2), loc

(X ,E)) E-valued m-forms (resp. (p,q)-

forms) with locally integrable coe�cients. One has a natural decomposition

Lm(2), loc
(X ,E) = ⊕p+q=mL

p,q
(2), loc

(X ,E)

Moreover, the operators D′′ (and D′
h
,

¯∂E respectively) act on Lm
(2), loc

(X ,E) in the sense of

distribution, or precisely speaking, E-valued currents. Note that those objects are all de�ned

without the choice of the metrics ω and h. A section s ∈ Lm
(2), loc

(X ,E) is said to be in the

domain of de�nition of D′′, denoted by Dom locD
′′
, if D′′s ∈ Lm+1

(2), loc

(X ,E).

Let Lm
(2)
(X ,E)h,ω (resp. L

p,q
(2)
(X ,E)h,ω) be the completion of the pre-Hilbert space Am

0
(X ,E)

(resp. A
p,q
0
(X ,E)) with respect to the above inner product 〈〈•, •〉〉. We simply write Lm

(2)
(X ,E)

(resp. L
p,q
(2)
(X ,E)) if no confusion happens. By the Lebesgue’s theory of integration, Lm

(2)
(X ,E)

(resp. L
p,q
(2)
(X ,E)) is a subset of Lm

(2), loc

(X ,E) (resp. L
p,q
(2), loc

(X ,E)). The natural decomposition

Lm(2) (X ,E) = ⊕p+q=mL
p,q
(2)
(X ,E)

is orthogonal with respect to the inner product 〈〈•, •〉〉.
Hence D′′ (and D′

h
,

¯∂E respectively) act on them respectively, and these operators are

unbounded, densely de�ned linear operators

Lm(2) (X ,E) → Lm+1

(2) (X ,E).

The domain of de�nition of D′′ denoted by DomD′′ are de�ned by

{u ∈ Lm(2) (X ,E) | D
′′u ∈ Lm+1

(2) (X ,E)},

for which one has DomD′′ ⊂ Dom locD
′′
. Note that DomD′′ depends on the choice of the

metric ω and h, up to mutual boundedness. Namely, if ω̃ ∼ ω and
˜h ∼ h, DomD′′ remains

the same in terms of the new metrics ω̃ and
˜h.

By the argument in [Dem12, Chapter VIII, Theorem 1.1], this extended operator D′′ (the

so-called weak extension in the literature) is closed, namely its graph is closed. DomD′
h

is

de�ned in exactly same manner.

The following result in [Dem12, Chapter VIII, Theorem 3.2.(a)] is crucial in applying the

L2
-estimate. Roughly speaking, it gives a condition when the weak extension of D′′ is the

strong one, in terms of the graph norm, and it enables us to apply the integration by parts

for L2
-sections as in Lemma 2.4.

Theorem 2.2. Let (X ,ω) be a complete Kähler manifold and (E, ¯∂E,θ ,h) is a Higgs bundle on
X satisfying Assumption 1.6. ThenAm

0
(X ,E) is dense inDomD′′, DomD′′∗ andDomD′′∩DomD′′∗

respectively for the graph norm

u 7→ ‖u‖ + ‖D′′u‖, u 7→ ‖u‖ + ‖ (D′′)∗u‖, u 7→ ‖u‖ + ‖D′′u‖ + ‖D′′∗u‖.

We recall the following theorem of functional analysis by Von Neumann and Hömander,

which is crucial in obtaining the L2
-estimate for Higgs bundles.

Lemma 2.3. Let H1, H2 and H3 be complex Hilbert spaces, and T : H1 → H2 and S :

H2 →H3 are closed and densely de�ned linear operators satisfying DomS ⊃ ImT . Then

(i) H2 = ker S ⊕ Im S∗.
(ii) Let v ∈ H2, Then v ∈ ImT if and only if there exists a nonnegative number C such that

|〈〈u,v〉〉
2
| ≤ C‖T ∗u‖1(2.2.1)

holds for any u ∈ DomT ∗.
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Note that y ∈ DomT ∗ if the linear form

DomT 3 x 7→ 〈〈Tx ,y〉〉
2

is bounded in H1-norm. Since DomT is dense, there exists for every y in DomT ∗ a unique

element T ∗y H1 such that 〈〈x ,T ∗y〉〉
1
= 〈〈Tx ,y〉〉

2
for all x ∈ DomT .

Note thatAm := [

√
−1F (h),Λω] acts on∧mT ∗X⊗E as a hermitian operator. AsAm is smooth,

for anyu ∈ Lm
(2), loc

(X ,E),Am (u) ∈ L
m
(2), loc

(X ,E). IfAm is semi-positively de�nite,A
1

2

m is also a

densely de�ned hermitian operator from Lm
(2)
(X ,E) to itself. The following result is exactly

the same vein as the Kodaira-Nakano inequality (see [Dem82, lemme 4.4])

Lemma 2.4. Let (X ,ω) be a complete Kähler manifold and (E, ¯∂E,θ ,h) is a Higgs bundle
on X satisfying Assumption 1.6. Assume that Am is semi-positively de�nite. Then for every
u ∈ DomD′′ ∩ DomD′′∗, one has

‖D′′u‖2 + ‖D′′∗u‖2 ≥ 〈〈Amu,u〉〉 :=

∫
X
〈Amu,u〉h,ωdVolω(2.2.2)

Proof. Since (X ,ω) is complete, by the proof of [Dem12, Chapter VIII, Theorem 3.2.(a)],

there exists an exhaustive sequence {Kν }ν∈N of compact subsets of X and functions ρν such

that ρν = 1 in a neighborhood of Kν , Supp(ρν ) ⊂ Kν+1, 0 ≤ ρν ≤ 1, and |dρν |ω ≤ 2
−ν

.

One can show that ρνu → u in the graph norm u 7→ ‖u‖ + ‖D′′u‖ + ‖D′′∗u‖. Since Am is

supposed to be semi-positively de�nite, hence

lim

ν→+∞

∫
X
〈Am (ρνu), ρνu〉h,ωdVolω =

∫
X
〈Am (u),u〉h,ωdVolω ,

which might be +∞ in general. Hence it su�ces to prove (2.2.2) under the assumption that

u has compact support.

By the convolution arguments in [Dem12, Chapter VIII, Theorem 3.2.(a)], there exists

u` ∈ A
m
0
(X ,E) so thatu` tends tou as ` → ∞with respect to the graph norm ‖u‖+ ‖D′′u‖+

‖D′′∗u‖, and there is a uniform compact set K so that Supp(u` ) ⊂ K for all `. By Lemma 1.7,

one has

〈〈∆′′u`,u`〉〉 = 〈〈∆
′u`,u`〉〉 + 〈〈Amu`,u`〉〉

As u` has compact support, one applies integration by parts to obtain

〈〈∆′′u`,u`〉〉 = ‖D
′′u`‖

2 + ‖D′′∗u`‖
2

and

〈〈∆′u`,u`〉〉 = ‖D
′
hu`‖

2 + ‖D′∗u`‖
2 ≥ 0

which gives rise to

‖D′′u`‖
2 + ‖D′′∗u`‖

2 ≥ 〈〈Amu`,u`〉〉

(2.2.2) follows from the above inequality when ` tends to in�nity. The lemma is proved. �

Remark 2.5. Suppose that Am is a semi-positively de�nite hermitian operator on ∧mT ∗X ⊗ E.

For some v ∈ Lm
(2)
(X ,E), assume that for almost all x ∈ X , there exists α (x ) ∈ [0,+∞[ so

that

|〈v, f 〉h,ω |
2 ≤ α (x )〈v,Am (x )v〉h,ω

for any f ∈ Am
0
(X ,E)x . If the operatorAm (x ) is invertible, the minimum ofα (x ) is 〈Am (x )

−1u,u〉h,ω .

Hence we shall always formally write it in this way even whenAm (x ) is no longer invertible,

following [Dem12, Chapter VIII, §4].

Now we are able to state our main result on L2
-estimate for Higgs bundles.
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Theorem 2.6 (SolvingD′′-equation for Higgs bundle). Let (X ,ω) be a complete Kähler man-
ifold, and (E, ¯∂E,θ ,h) be a Higgs bundle on X satisfying Assumption 1.6. Assume that Am is
semi-positively de�nite on ∧mT ∗X ⊗ E at every x ∈ X . Then for any v ∈ Lm

(2)
(X ,E) such that

D′′v = 0 and ∫
X
〈A−1

m v,v〉dVolω < +∞,

there exists u ∈ Lm−1

(2)
(X ,E) so that D′′u = v and

‖u‖2 6
∫
X
〈A−1

m v,v〉dVolω .

Proof. We will apply Lemma 2.3.(ii) to prove this theorem. We have the following compar-

ison

H1 = Lm−1

(2) (X ,E)
T=D ′′

−−−−→H2 = Lm(2) (X ,E)
S=D ′′

−−−−→H3 = Lm+1

(2) (X ,E),

which satis�es the conditions in Lemma 2.3.(ii).

For any f ∈ DomS ∩ DomT ∗, one has

|〈〈f ,v〉〉|2 = |

∫
X
〈f ,v〉dVolω |

2 ≤ |

∫
X
〈A−1

m v,v〉
1

2 · 〈Am f , f 〉
1

2dVolω |
2

≤

∫
X
〈A−1

m v,v〉dVolω ·

∫
X
〈Am f , f 〉dVolω

by Cauchy-Schwarz inequality. By (2.2.2) one has

|〈〈f ,v〉〉|2 ≤ C (‖S f ‖2 + ‖T ∗ f ‖2),(2.2.3)

where C :=
∫
X
〈A−1

m v,v〉dVolω > 0.

Note that T ∗ ◦ S∗ = 0 by S ◦ T = 0. By Lemma 2.3.(i), for any f ∈ DomT ∗, there is an

orthogonal decomposition f = f1+ f2, where f1 ∈ ker S and f2 ∈ (ker S )⊥ = Im S∗ ⊂ kerT ∗.
Since v ∈ ker S , by (2.2.3) we then have

|〈〈f ,v〉〉|2 = |〈〈f1,v〉〉|
2 6 C (‖S f1‖

2 + ‖T ∗ f1‖
2) = C‖T ∗ f1‖

2 = C‖T ∗ f ‖2.

By Lemma 2.3.(ii), we conclude that there is u ∈ Lm−1

(2)
(X ,E) so that Tu = v with ‖u‖2 ≤ C .

The theorem is proved. �

A direct consequence is the following result which can be seen as a Higgs bundle version

of Girbau vanishing theorem (see [Dem12, Chapter VII, Theorem 4.2]) in the log setting

[HLWY16, Theorem 4.1].

Corollary 2.7. Let (X ,ω) be a complete Kähler manifold, and (Ẽ, ˜θ , ˜h) be any harmonic
bundle on X . Let L be a line bundle on X equipped with a metric hL. Assume that for some
m > 0, one has

〈[
√
−1R (hL),Λω]f , f 〉ω ≥ ε | f |

2

ω(2.2.4)

for any f ∈ Λp,qT ∗X ,x , any x and any p + q =m. Set (E,θ ,h) := (Ẽ ⊗ L, ˜θ ⊗ 1L, ˜hhL). Then for
any v ∈ Lm

(2)
(X ,E) such that D′′v = 0, there exists u ∈ Lm−1

(2)
(X ,E) so that D′′u = v and

‖u‖2 6
‖v ‖2

ε
.
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Proof. Note that

√
−1F (h) =

√
−1

(
R (h) + [θ ,θ ∗h]

)
=
√
−1R ( ˜h) ⊗ 1L +

√
−1R (hL) ⊗ 1E + [

˜θ ⊗ 1L, ˜θ ∗
˜h
⊗ 1L]

=
√
−1F ( ˜h) ⊗ 1L +

√
−1R (hL) ⊗ 1E

=
√
−1R (hL) ⊗ 1E,(2.2.5)

where the last equality follows from that F ( ˜h) = 0 since (Ẽ, ˜θ , ˜h) is a harmonic bundle. In

this case, it is easy to see that for any f ∈ (ΛmT ∗X ⊗ E)x , decomposing f =
∑

p+q=m f p,q with

f p,q its (p,q)-component, one has

〈Am f , f 〉h,ω =
∑

p+q=m

〈[
√
−1R (hL),Λω] ⊗ 1E ( f

p,q ), f p,q〉hL ,ω ≥
∑

p+q=m

ε | f p,q |2h,ω = ε | f |
2

h,ω .

Hence 〈A−1

m f , f 〉h,ω ≤ ε−1 | f |2
h,ω
. Applying Theorem 2.6, we conclude that there is u ∈

Lm−1

(2)
(X ,E) so that D′′u = v and

‖u‖2 6
∫
X
〈A−1

m v,v〉h,ωdVolω ≤
‖v ‖2

ε
.

�

3. Vanishing theorem for tame harmonic bundles

3.1. Parabolic Higgs bundle. In this section, we recall the notions of parabolic Higgs

bundles. For more details refer to [AHL19, section 1, 3, 4, 5] and [MY92, section 1]. Let

X be a complex manifold, D =
∑`

i=1
Di be a reduced simple normal crossing divisor and

U = X − D be the complement of D.

De�nition 3.1. A parabolic sheaf (E, aE,θ ) on (X ,D) is a torsion free OU -module E, to-

gether with an Rl -indexed �ltration aE (parabolic structure) by coherent subsheaves such

that

1). a ∈ Rl and aE |U = E.

2). For 1 ≤ i ≤ l , a+1iE = aE (−Di ), where 1i = (0, . . . , 0, 1, 0, . . . , 0) with 1 in i-th
component.

3). a−ϵE =a E for any vector ϵ = (ϵ, . . . , ϵ ) with 0 < ϵ � 1.

4). The set of weights a such that aE/a+ϵE , 0 is discrete in Rl for any vector ϵ =
(ϵ, . . . , ϵ ) with 0 < ϵ � 1.

A weight is normalized if it lies in [0, 1)l . Denote 0E by
�E, where 0 = (0, . . . , 0) . Note

that the parabolic structure of (E, aE,θ ) is uniquely determined by the �ltration for weights

lying in [0, 1)l . A parabolic bundle on (X ,D) consists of a vector bundle E on X with a

parabolic structure, such that as a �ltered bundle.

De�nition 3.2. A parabolic Higgs bundle on (X ,D) is a parabolic bundle (E, aE,θ ) together

with OX linear map

θ :
�E → Ω1

X (logD) ⊗ �E

such that

θ ∧ θ = 0

and

θ (aE) ⊆ Ω1

X (logD) ⊗ aE,

for a ∈ [0, 1)l .

A natural class of parabolic Higgs bundles comes from prolongations of tame harmonic

bundle, which is discussed in the following section.
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3.2. Prolongation by an increased order. By a celebrated theorem of Simpson and Mochizuki,

there is a natural parabolic Higgs bundle induced by tame harmonic bundle (E,θ ,h).
We recall some notions in [Moc07, §2.2.1]. Let (X ,D) be the pair in subsection 3.1. Let E

be holomorphic vector bundle with a C∞ hermitian metric h over X − D.

Let U be an open subset of X , which is admissible with respect to D. For any section

σ ∈ Γ(U − D,E |U−D ), let |σ |h denote the norm function of σ with respect to the metric

h. We denote |σ |h ∈ O (
∏`

i=1
|zi |
−bi ) if there exists a positive number C such that |σ |h ≤

C ·
∏`

i=1
|zi |
−bi

. For any b ∈ R` , say −ord(σ ) ≤ b means the following:

|σ |h = O (
∏̀
i=1

|zi |
−bi−ε )

for any real number ε > 0. For any b, the sheaf bE is de�ned as follows:

Γ(U − D, bE) := {σ ∈ Γ(U − D,E |U−D | −ord(σ ) ≤ b}.(3.2.1)

The sheaf bE is called the prolongment of E by an increasing order b. In particular,we use

the notation
�E in the case b = (0, . . . , 0).

According to Simpson [Sim90, Theorem 2] and Mochizuki [Moc09, Propostion 2.53], the

above prolongation gives a parabolic Higgs bundles, especially θ preserves the �ltration.

Theorem 3.3 (Simpson, Mochizuki). Let (X ,D) be a complex manifold X with a simple nor-
mal crossing divisor D. If (E,θ ,h) is a tame harmonic bundle onX −D, then the corresponding
�ltration bE according to the increasing order in the prolongment of E de�nes a parabolic bun-
dle (E, bE,θ ) on (X ,D). �

De�nition 3.4 (Acceptable bundle). Let (E, ¯∂E,h) be a hermitian vector bundle over X −D.

We say that (E, ¯∂E,h) is acceptable at p ∈ D, if the following holds: there is an admissible

coordinate (U ; z1, . . . , zn ) around p, so that the norm |R (E,h) |h⊗ωP ≤ C for C > 0. When

(E, ¯∂E,h) is acceptable at any point p of D, it is called acceptable.

3.3. Modi�cation of the metric. This subsection is mainly inspired by [Moc02, §4.5.3].

Let us consider the case X = ∆n
, and D =

∑`
i=1

Di with Di = (zi = 0). Let (E, ¯∂E,h) be an

acceptable bundle over X − D. For any a ∈ R`
≥0

and N ∈ Z, we de�ne

χ (a,N ) := −
∑̀
j=1

aj log |zj |
2 − N

( ∑̀
j=1

log(− log |zj |
2) +

n∑
k=`+1

log(1 − |zk |
2)

)
.(3.3.1)

Set h(a,N ) := h · e−χ (a,N )
. Then

R (h(a,N )) = R (h) +
√
−1∂∂χ (a,N ) = R (h) + NωP .

Note that ΩX ∗ = ⊕
n
i=1

Li where Li is the trivial line bundle de�ned by Li := p∗i Ω∆∗ for

i = 1, . . . , ` and Lk = p∗
k
Ω∆ for k = ` + 1, . . . ,n where pi is the projection of (∆∗)` × ∆n−`

to its i-th factor. For any p = 1, . . . ,n, set hp to be the hermitian metric on Ω
p
X ∗ induced

by ωP . Then there is a positive constant C (p, `) > 0 depending only on p and ` so that

|R (hp ) |hp ,ωP ≤ C (p, `). Set C0 := supp=0,...,n;`=1,...,nC (p, `).

Proposition 3.5. Let (E, ¯∂E,h) be an acceptable bundle over X − D, where X is a compact
complex manifold and D is a simple normal crossing divisor. Then there is a constant N0 > 0

so that, for any p ∈ D, one has an admissible coordinate (U ; z1, . . . , zn ) around p (which can be
made arbitrary small), and for vector bundles Ep := T

p
U ∗ ⊗ E and Fp := Ω

p
U ∗ ⊗ E, which are all

equipped with the C∞-metric hEp and hFp induced by h(a,N ) and ωP , one has the following
estimate

√
−1R (hEp ) >Nak ωP ⊗ 1Ep ;

√
−1R (hFp ) 6Gri 2NωP ⊗ 1Fp(3.3.2)

overU ∗ for any N > N0. Such N0 does not depend on the choice of a.
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Proof. As (E,h) is assumed to be acceptable, for any x ∈ D, one can �nd an admissible

coordinate (U ; z1, . . . , zn;φ) around x so that |R (h) |h,ωP ≤ C . By the above argument, one

has |R (hp ) |hp ,ωP ≤ C0. By Lemma 1.9, we conclude that there is a constant C1 > 0 which

depends only on C so that

|R (h−1

p h) |h−1

p h,ωP
≤ C1, |R (hph) |hph,ωP ≤ C1

for any p = 0, . . . ,n, where h−1

p h is the metric for Ep and hph is the metric for Fp . By

Lemma 1.8, one has

√
−1R (h−1

p h) ≥Nak −C1ωP ⊗ 1Ep ,
√
−1R (hph) ≤Nak C1ωP ⊗ 1Fp .

As hEp = h
−1

p h(a,N ) and hFp = hph(a,N ), we then have

√
−1R (hEp ) ≥Nak (N −C1)ωP ⊗ 1Ep ,

√
−1R (hFp ) ≤Nak (N +C1)ωP ⊗ 1Fp .

If we take Nx = C1 + 1, then the desired estimate (3.3.2) follows for any N ≥ Nx .

Now we will prove that for points near x , the above estimate Nx holds uniformly. As C1

depends only on C , one has to prove that there is a constant C so that for any point z near

x , there is an admissible coordinate with respect to z so that |R (h) |h,ωP ≤ C .

Claim 3.6. Let ϕ : ∆→ ∆∗ de�ned by ϕ (t ) = t
4
+ 1

2
. Then

ϕ∗
√
−1dz ∧ dz̄

|z |2(log |z |2)2
=

√
−1dt ∧ dt̄

|ϕ (t ) |2(log |ϕ (t ) |2)2
≤ C2

√
−1dt ∧ dt̄ ≤ C2

√
−1dt ∧ dt̄

(1 − |t |2)2
,

where C2 = 16(log
9

16
)−2.

For any z ∈ U , we �rst assume that z1 = · · · = z` = 0, namely the components of D
passing to z are the same as x . Take isomorphisms of unit disk {ϕj ∈ Aut(∆)}j=`+1,...,n so

that ϕj (zj ) = xj . Note that x1 = · · · = x` = 0. Hence (1∆, . . . , 1∆,ϕ`+1, . . . ,ϕn ) ◦φ : U → ∆n

gives rise to the admissible coordinate for z, and the Poincaré metric ωP is invariant under

this transformation. Hence one can take Nz = Nx .

Now we assume that z1 = · · · = zm = 0, and that any of {zm+1, . . . , z`} is not equal to zero.

We �rst take automorphisms {ηi }i=m+1,...,` ⊂ Aut(∆∗) so that ηi (
1

2
) = zi . Set ϕi = ηi ◦ ϕ :

∆ → ∆∗ for i =m + 1, . . . , `. Take isomorphisms of unit disk {ϕj ∈ Aut(∆)}j=`+1,...,n so that

ϕj (zj ) = xj . Then φ−1 ◦ (1∆, . . . , 1∆,ϕm+1, . . . ,ϕn ) : ∆n → X will gives rise to the desired

admissible coordinate for such z. By the above claim, one has |R (h) |h,ωP ≤ C2C . Hence the

above estimate Nx can be made uniformly in U . As X and D is compact, one can cover D
by �nite such open sets, and the desired N0 in the theorem can be achieve.

We now show that these admissible coordinates can be made arbitrarily small. For 0 <
ε < 1, set

ϕε : ∆n → ∆n

(z1, . . . , zn ) → (εz1, . . . , εzn ).

For any admissible coordinate (U ; z1, . . . , zn;φ) around x so that |R (h) |h,ωP ≤ C , one can

introduce a new one (U (ε );w1, . . . ,wn;φε ) around x with

φε : U (ε )
∼
→ ∆n

x → φ ◦ ϕε (x ).

When ε � 1, this admissible coordinate will be arbitrarily small. Note that ϕ∗εωP ≤ ωP .

Hence in (U (ε );w1, . . . ,wn;φε ), one still have |R (h) |h,ωP ≤ C . The constant Nx is thus un-

changed. The proposition is proved. �

This result will be important for us to construct a �ne resolution of parabolic Higgs

bundles in § 3.5.
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3.4. FromL2-integrability toC 0-estimate. Note that in order to show the quasi-isomorphism

between some complex of sheaves of L2
-forms and (0.1.1), one has to deduce some norm

estimate of sections from the L2
-integrability condition. In the case that (E,θ ) is a line

bundle without Higgs �eld, this is not di�cult and has been carried out in [DPS01, §2.4.2]

and [HLWY16, Theorem 3.1]. This subsection is devoted to show this using mean value
inequality following [Moc09, Lemma 7.12].

We �rst recall the following well-known lemma and we provide the proof for complete-

ness sake.

Lemma 3.7. Assume that R (h) is Gri�ths negative. Then for any holomorphic section s ∈
H 0(X ,E), one has

√
−1∂∂ log |s |h > 0.

Proof. Outside the zero locus (s = 0), one has

√
−1∂∂ log |s |2h =

√
−1

{D′s,D′s}h

|s |2
h

−
√
−1

{D′s, s}h ∧ {s,D
′s}h

|s |4
h

−
{
√
−1R (h)s, s}h

|s |2
h

≥ −
{
√
−1R (h)s, s}h

|s |2
h

≥ 0

where the �rst inequality is due to Cauchy-Schwarz inequality and the second one follows

from the assumption that R (h) is Gri�ths negative. As log |s |2
h

is locally bounded from

above, it is thus a global plurisubharmonic function on X . �

Proposition 3.8. With the same setting as Proposition 3.5, for any p ∈ D, we take an admis-
sible coordinate (U ; z1, . . . , zn ) around p and pick N ≥ N0 as in Proposition 3.5. Then for any
section s ∈ H 0(U ∗,Ω

p
U ∗ ⊗ E |X ∗ ), when 0 < r � 1, one has

|s |h,ωP (z) ≤ C‖s ‖h(a,N ),ωP · (
∏̀
i=1

|zi |
−ai−δ )(3.4.1)

for any δ > 0 and any z ∈ U ∗(r ).

Proof. By Proposition 3.5, for the hermitian vector bundle (Ω
p
U ∗ ⊗ E, (hph(a,−N )) one thus

has

R (hph(a,−N )) = R (hph(a,N )) − 2NωP ⊗ 1Ωp
U ∗⊗E

6Gri 0

over U ∗ for N > N0. For any section s ∈ H 0(U ∗,Ω
p
U ∗ ⊗ E), by Lemma 3.7 one has

√
−1∂∂ log |s (z) |2h(a,−N ),ωP

≤ 0,
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where we omithp for simplicity. For any z ∈ U ∗(r ) where 0 < r � 1, one has log |s (z) |2
h(a,−N ),ωP

<

0, and

log |s (z) |2h(a,−N ),ωP
6

4
n

πn
∏`

i=1
|zi |2

∫
Ωz

log |s (w ) |2h(a,−N ),ωP
dvolд

6 log

(
4
n

πn
∏`

i=1
|zi |2

·

∫
Ωz

|s (w ) |2h(a,−N ),ωP
dvolд

)
6 log

(
C

∫
Ωz

1∏`
i=1
|wi |

2

|s (w ) |2h(a,−N ),ωP
dvolд

)
6 logC1 + log

∫
Ωz

|s (w ) |2h(a,−N ),ωP
· |

∏̀
i=1

(log |wi |
2)2 |

n∏
j=`+1

(1 − |wj |
2)2dvolωP

6 logC1 + log

∫
Ωz

|s (w ) |2h(a,N ),ωP
dvolωP

6 logC1 + log‖s ‖2h(a,N ),ωP

where Ωz := {w ∈ U ∗ | |wi−zi | ≤
|zi |
2

for i ≤ `; |wi−zi | ≤
1

2
for i > `} andд is the Euclidean

metric. The �rst inequality is due to mean value inequality, and the second one is Jensen

inequality. Hence

|s (z) |h,ωP = |s (z) |h(a,−N ),ωP · (−
∏̀
i=1

log |zi |
2)

N
2 · (

∏̀
i=1

|zi |
−ai )

≤ e
C

1

2 ‖s‖h(a,N ),ωP · (−
∏̀
i=1

log |zi |
2)

N
2 · (

∏̀
i=1

|zi |
−ai )

6 Cδ ‖s ‖h(a,N ),ωP · (
∏̀
i=1

|zi |
−ai−δ )

for any δ > 0 and some positive constant Cδ depending on δ . �

3.5. A�ne resolution for Dolbeault complex of Higgs bundles. Let (E,θ ,h) be a tame

harmonic bundle on X − D, where (X ,ω) is a compact Kähler manifold and D =
∑`

i=1
Di is

a simple normal crossing divisor on D.

Let L be a line bundle on X equipped with a smooth metric hL so that

√
−1R (hL) ≥ 0 and

has at least n−k positive eigenvalues
1
. Let P be a nef line bundle onX . Let σi be the section

H 0(X ,OX (Di )) de�ning Di , and we pick any smooth metric hi for the line bundle OX (Di ) so

that |σi |hi (z) < 1 for any z ∈ X . Write σD :=
∏`

i=1
σi ∈ H

0(X ,OX (D)) and hD :=
∏`

i=1
hi the

smooth metric for OX (D). Pick a positive constant N greater than N0, which is the constant

in Proposition 3.5 so that (3.3.2) holds.

Given a smooth metric hP on P , note that for L := L ⊗ P |X ∗ equiped with the metric

hL := hLhP
∏̀
i=1

|σi |
2ai
hi
· (−

∏̀
i=1

log |σi |
2

hi
)N ,(3.5.1)

1
Such a metrized line bundle (L,hL ) is called k-positive in [SS85].
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its curvature

√
−1R (hL ) =

√
−1R (hL) +

√
−1R (hP ) +

∑̀
i=1

2

√
−1aiR (hi )(3.5.2)

+
√
−1N

∑̀
i=1

∂ log|σi |
2

hi
∧ ¯∂ log|σi |

2

hi

(log|σi |
2

hi
)2

− N
∑̀
i=1

√
−1R (hi )

(log|σi |
2

hi
)2

Here R (hi ) is the curvature of

(
OX (Di ),hi

)
.

Let 0 ≤ γ1(x ) ≤ · · · ≤ γn (x ) be eigenvalues of

√
−1R (hL) with respect to ω. Set ε0 :=

infX γk+1(x ) which is strictly positive by our assumption on

√
−1R (hL).

Note that for the prolongation
�E on X of (E,θ ,h) in § 3.2, by the semi-continuity of

parabolic Higgs bundles, there is a b = (b1, . . . ,b` ) ∈ R
`
<0

, so that one has bE =
�E.

Lemma 3.9. We can rescale hi by timing a positive small constant, take proper metric hP for
P and pick a ∈ R`>0

and δ > 0 small enough so that
(1) ai + bi + δ < 0 for i = 1, . . . , `.
(2) ai > δ for i = 1, . . . , `
(3) One has

√
−1R (hL ) ≥

√
−1R (hL) − ε1ω ≥ −ε1ω .(3.5.3)

for ε1 =
ε0

100n2
.

(4) The metric

ωa,N := ε2ω +
√
−1R (hL )(3.5.4)

is a Kähler metric when restricted on X ∗ = X − D for ε2 =
ε0

10n .

Proof. Note that (1), (2) are easy to made, and (4) is a consequence of (3). Let us explain

how to achieve (3). The possible negative contribution for

√
−1R (hL ) only can come from

√
−1R (hP ) +

∑`
i=1

2

√
−1aiR (hi ) − N

∑`
i=1

√
−1R (hi )

(log|σi |
2

hi
)2

. As P is nef, one can take hP so that

√
−1R (hP ) ≥ −

1

2
ε1ω. As N is �xed, we can replace hi by c · hi for c → 0

+
and let ai ’s

small enough, so that

∑`
i=1

2

√
−1aiR (hi ) − N

∑`
i=1

√
−1R (hi )

(log|σi |
2

hi
)2
≥ −1

2
ε1ω. �

We know that ωa,N is a complete Kähler metric. Indeed, write hi
loc

= e−φi in terms of the

trivialization Di ∩U = (zi = 0) of any admissible coordinate (U ; z1, . . . , zn ), one has

ωa,N =
(
ε2ω +

∑̀
i=1

2

√
−1aiR (hi ) +

√
−1R (hP )

)
+ N

∑̀
i=1

1

(log |z |2i + φi )
2

(
dzi
zi
+ ∂φi ) ∧ (

dz̄i
z̄i
+ ¯∂φi )

− N
∑̀
i=1

√
−1∂∂φi

log |z |2i + φi

From this local expression one can also see that ωa,N ∼ ωP on any U ∗(r ) for 0 < r < 1. We

also can show the following

Lemma 3.10. For the smooth metric ha,N := h ·
∏`

i=1
|σi |

2ai
hi
· (−

∏`
i=1

log |σi |
2

hi
)N of E, it is

mutually bounded with h(a,N ) de�ned in § 3.3 on anyU ∗(r ) for 0 < r < 1.

Let us prove that such construction satis�es the positivity condition in Corollary 2.7.

Proposition 3.11. With the above notations, for any p + q > n + k , one has

〈[
√
−1R (hL ),Λωa,N ]f , f 〉ωa,N ≥

ε

2

| f |2ωa,N
(3.5.5)

for any f ∈ Λp,qT ∗X ∗,x and any x ∈ X
∗.
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Proof. For any point x ∈ X , one can choose local coordinate (z1, . . . , zn ) around x so that at

x , ω =
√
−1

∑n
i=1

dzi ∧ dz̄i and

√
−1R (hL ) =

√
−1

∑n
i=1

γ̃idzi ∧ dz̄i , where γ̃1 ≤ · · · ≤ γ̃n are

eigenvalues of

√
−1R (hL ) with respect toω. By (3.5.3) one has γ̃i ≥ γi−ε1. Let λ1 ≤ · · · ≤ λn

be eigenvalues of

√
−1R (hL ) with respect to ωa,N . Then λi =

γ̃i
ε2+γ̃i

, and thus at each point

x ∈ X ∗, one has

• −
ε1

ε2−ε1

≤ λi ≤ 1 for i = 1, . . . ,n.

• λi ≥ 1 −
ε2

ε0−ε1

for for i = k + 1, . . . ,n.

We can assume that p ≥ q. Then

〈[
√
−1R (hL ),Λωa,N ]f , f 〉ωa,N ≥ (

p∑
i=1

λi +

q∑
j=1

λj − λ1 − · · · − λn ) | f |
2

ωa,N

≥
(
(p − k ) (1 −

ε2

ε0 − ε1

) −
kε1

ε2 − ε1

− (n − q)
)
| f |2ωa,N

≥
(
1 − n(

ε2

ε0 − ε1

+
ε1

ε2 − ε1

)
)
| f |2ωa,N

≥
1

2

| f |2ωa,N
.

�

Remark 3.12. Let us mention that Lemma 3.9 and proposition 3.11 are indeed inspired by the

proof of Girbau vanishing theorem in [Dem12, Chapter VII, Theorem 4.2] and its logarithmic

generalization in [HLWY16, Theorem 4.1].

We equip E with the metric ha,N and X ∗ with the complete Kähler metric ωa,N having

the same growth as ωP near D. Let Lm
(2)
(E)ha,N ,ωa,N be the sheaf on X (rather than on X ∗!) of

germs of locally L2, E-valued m-forms, for which D′′(u) exists weakly as locally L2
-forms.

Namely, for any open set U ⊂ X , we de�ne

L
m
(2) (E) (U ) := {u ∈ Lm(2) (U − D,E) | D

′′u ∈ Lm+1

(2) (U − D,E)}.(3.5.6)

Here we write Lm
(2)
(E) instead of Lm

(2)
(E)ha,N ,ωa,N for short.

We also de�ne L
p,q
(2)
(E) to be be the sheaf on X of germs of locally L2, E-valued (p,q)-

forms, for which both
¯∂E (u) exist weakly as locally L2

-forms. Namely, for any open set

U ⊂ X , one has

L
p,q
(2)
(E) (U ) := {u ∈ L

p,q
(2)
(U − D,E) | ¯∂Eu ∈ L

p,q+1

(2)
(U − D,E)}(3.5.7)

Note that for any admissible coordinate (U ; z1, . . . , zn ), as ωa,N ∼ ωP and ha,N ∼ h(a,N ) on

any U ∗(r ) for 0 < r < 1, one has

L
m
(2) (E) (U

∗(r )) = Lm(2) (U
∗(r ),E)h(a,N ),ωP , L

p,q
(2)
(E) (U ∗(r )) = L

p,q
(2)
(U ∗(r ),E)h(a,N ),ωP .

The following lemma will be crucial for us.

Lemma 3.13. Lm
(2)
(E) = ⊕p+q=mL

p+q
(2)

(E).

Proof. For any x ∈ D and any admissible coordinate (U ; z1, . . . , zn ), we have

|θ |h(a,N ),ωP = |θ |h,ωP · e
−χ (a,N )

where χ (a,N ) is de�ned in (3.3.1). By Theorem 1.5, one has

|θ |h(a,N ),ωP ≤ C

for any C . Hence θ is a bounded linear operator

L
p,q
(2)
(U − D,E) → L

p+1,q
(2)

(U − D,E).

The theorem follows from that D′′ = ¯∂E + θ . �
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Proposition 3.14. Let A m (�E) be the sheaf on X of germs of smoothm-forms with values in
⊕p+q=m

�E ⊗ Ω
p,q
X (logD). One has the inclusion

A m (�E) ⊂ Lm(2) (E)

which is densely de�ned.

Proof. For any x ∈ D, we pick an admissible coordinate (U ; z1, . . . , zn ) with D ∩ U =

(z1 . . . z` = 0) and a holomorphic frame v1, . . . ,vr ∈ Γ(U , �E). By the de�nition of
�E and

our choice of a in (2), one has |vα |h ≤ C
∏`

i=1
|zi |
−ai+2δ

for each α = 1, . . . , r .

Write wi = log zi for i = 1, . . . , ` and wj = zj for j = ` + 1,n. For the basis {dwI ∧

dw̄ J }|I |+|J |=m of ⊕p+q=mΩ
p,q
X (logD), on U ∗(r ) with 0 < r < 1, one has

|dwI ∧ dw̄ J |ωP ≤ C
∏

i∈(I∪J )∩{1,...,`}

(− log |zi |
2)

which have at most logarithmic growth. For any smooth section s ∈ A m (�E) (U ) with any

0 < r < 1, we can write s =
∑
|I |+|J |=m,α f αI ,JdwI ∧ dw̄ J ⊗ vα with { f αI ,J } smooth functions on

U . Hence one has

|s |h,ωP ≤ C′
∏̀
i=1

|zi |
−ai+δ

on any U ∗(r ) with 0 < r < 1. Therefore,

|s |h(a,N ),ωP ≤ C′
∏̀
i=1

|zi |
−ai+δ · e−χ (a,N ) ≤ C′′

where χ (a,N ) is de�ned in (3.3.1), and we use the fact that there is a constant C (N ,δ )
depending on positive constants N and δ so that

log(−|zi |
2)N ≤ C (N ,δ ) |zi |

−δ

when zi tends to 0. Hence ∫
U ∗ (r )
|s |2h(a,N ),ωP

dVolωP < +∞,

and since h(a,N ) ∼ ha,N and ωP ∼ ωa,N on any U ∗(r ) with 0 < r < 1, we conclude that∫
U ∗ (r )
|s |2ha,N ,ωa,N

dVolωa,N < +∞.

Note that θ : E → E ⊗ Ω1

X ∗ extends to θ :
�E → �E ⊗ Ω1

X (logD), and
¯∂E for E also extends

to the complex structure
¯∂�E of

�E, one thus can de�ne D′′ = ¯∂�E + θ : A m (�E) → A m+1(�E)
which extends the original

¯∂E + θ over X ∗. Hence

s ∈ Lm(2) (E) (U
∗(r )),

which proves the theorem. �

Recall that one has D′′2 = 0. Let (L•
(2)
(E),D′′) be a complex of �ne sheaves overX de�ned

by

L
0

(2) (E)
D ′′

−−→ L1

(2) (E)
D ′′

−−→ · · ·
D ′′

−−→ Lm(2) (E).(3.5.8)
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By Proposition 3.14, there is a natural inclusion

(3.5.9)

�E �E ⊗ Ω1

X (logD) · · · �E ⊗ Ωn
X (logD)

L0

(2)
(E) L1

(2)
(E) · · · Ln

(2)
(E) · · · L2n

(2)
(E)

θ θ θ

D ′′ D ′′ D ′′ D ′′ D ′′

and we are going to show that this morphism between two complexes are quasi-isomorphism.

We now recall a celebrated theorem (in a weaker form) by Demailly [Dem82, Théorème

4.1], which enables us to solve the
¯∂-equation on weakly pseudo-convex Kähler manifold

(might not be complete). When the metric is complete, it is due to Andreotti-Vesentini

[AV65].

Theorem 3.15 (Demailly). Let (X ,ω) be a Kähler manifold (ω might not be complete), where
X possesses a complete Kähler metric (e.g. X is weakly pseudo-convex). Let E be a vector
bundle on X equipped with a smooth hermitian metric h so that

√
−1Rh (E) ≥Nak εω ⊗ 1E,

where ε > 0 is a positive constant. Assume that д ∈ L
n,q
(2)
(X ,E) so that ¯∂д = 0. Then there

exists f ∈ Ln,q−1

(2)
(X ,E) so that ¯∂ f = д and

‖ f ‖2h,ω 6 ε−1‖д‖2h,ω .

This theorem by Demailly is used to solve the
¯∂-equation locally.

Proposition 3.16. For any x ∈ X , there is an open set U ⊂ X (can be made arbitrary small)
containing x so that for any д ∈ Lp,q

(2)
(E) (U ) with q ≥ 1 and ¯∂E (д) = 0, there exists a section

f ∈ L
p,q−1

(2)
(E) (U ) so that ¯∂E f = д.

Proof. Ifx < D, then we can take an open setU ⊂ X−D containingx which is biholomorphic

to a polydisk, and the theorem follows from the usual L2
-Dolbeault lemma. Assume x ∈ D.

Let (Ũ ; z1, . . . , zn ) be an admissible coordinate around x . By Proposition 3.5, Ep := T
p

Ũ ∗
⊗ E

equipped with the C∞-metric hEp = h
−1

p h(a,N ) induced by h(a,N ) and ωP , satisfying

√
−1R (hEp ) ≥Nak ωP ⊗ 1Ep

for any p = 0, . . . ,n. Note that ωP |Ũ ∗ ( 1

2
) ∼ ωa,N |Ũ ∗ ( 1

2
) and h(a,N ) |Ũ ∗ ( 1

2
) ∼ ha,N |Ũ ∗ ( 1

2
) . Hence

one has

L
n,q
(2)
(Ũ ∗(

1

2

),En−p )hEn−p ,ωP = L
p,q
(2)
(Ũ ∗(

1

2

),E)ha,N ,ωa,N(3.5.10)

for any p = 0, . . . ,n. For any д ∈ L
n,q
(2)
(Ũ ∗( 1

2
),En−p )hEn−p ,ωP with

¯∂(д) = 0, if q ≥ 1, by

Theorem 3.15, there is f ∈ L
n,q−1

(2)
(Ũ ∗( 1

2
),En−p )hEn−p ,ωP so that

¯∂ f = д. The proposition then

follows from (3.5.10), and Ũ ∗( 1

2
) is the desired open set U in the proposition. �

Now we are ready to prove that the L2
-complex is the desired �ne resolution for our

Higgs bundle.

Theorem 3.17. The morphism between two complexes in (3.5.9) is quasi-isomorphism.

Proof. Pick any m ∈ {0, . . . ,n}. We are going to show that ι : kerθ/ Imθ → kerD′′/ ImD′′

at
�E ⊗ Ωm

X (logD) is an isomorphism. For any x ∈ D, we pick an open set U 3 x as

in Proposition 3.16 and set U ∗ = U − D. Indeed, U ∗ = Ũ ∗( 1

2
) where (Ũ ; z1, . . . , zn ) is

an admissible coordinate around x and thus ha,N ∼ h(a,N ) and ωa,N ∼ ωP on U ∗. Pick
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any д ∈ Lm
(2)
(E) (U ) = Lm

(2)
(U ∗,E)h(a,N ),ωP so that D′′д = 0. By Lemma 3.13, we can write

д =
∑

p+q=m дp,q where дp,q ∈ L
p,q
(2)
(E) (U ), and let q0 be the largest integer for q so that

дp,q , 0. If q0 = 0, then д = дm,0 and one has
¯∂Eдm,0 = 0 and θдm,0 = 0. By the elliptic

regularity of
¯∂ one concludes that д ∈ Γ(U ∗,Ωm

U ∗ ⊗ E |U ∗ ). By Proposition 3.8, one has

|д |h,ωP ≤ C · (
∏̀
i=1

|zi |
−ai−δ )

If we write д =
∑
|I |=m dwI ⊗ eI , where (w1, . . . ,wn ) = (log z1, . . . , log z`, z`+1, . . . , zn ) and

eI ∈ Γ(U
∗,E |U ∗ ). Then

|д |h,ωP =
∑
|I |=m

|eI |h |dwI |ωP ≥ C′
∑
|I |=m

|eI |h

Hence |eI |h ≤ C′′ · (
∏`

i=1
|zi |
−ai−δ ) ≤ C′′′ · (

∏`
i=1
|zi |

bi ) by our choice of a in (1). As bE is

de�ned via the increasing order of sections of E in (3.2.1), we conclude that eI ∈ Γ(U , bE |U ).
As bE =

�E by our choice of b at the beginning of this subsection, one has eI ∈ Γ(U , �E).
Hence д ∈ Γ(U ,Ωm

X (logD) ⊗ �E |U ), which means that ι is surjective.

Now we assume that q0 > 0 and p0 is the largest integer for p so that дp,q , 0. By

Lemma 3.13, we can decompose D′′д into bidegrees, so that




¯∂Eдm−q0,q0
= 0

θдm−q0,q0
+ ¯∂Eдm−q0+1,q0−1 = 0

...

θдp0−1,m−p0+1 + ¯∂Eдp0,m−p0
= 0

θдp0,m−p0
= 0

for which, the operators act in the sense of distribution. Hence дm−q0,q0
∈ L

m−q0,q0

(2)
(E) (U )

with
¯∂Eдm−q0,q0

= 0. Applying Proposition 3.16, there is a section fm−q0,q0−1 ∈ L
m−q0,q0−1

(2)
(E) (U )

so that
¯∂E fm−q0,q0−1 = −дm−q0,q0

. By Lemma 3.13, D′′ fm−q0,q0−1 ∈ L
m
(2)
(E) (U ), and we de�ne

д′ := D′′ fm−q0,q0−1 + д ∈ L
m
(2)
(E) (U ). One thus has D′′д′ = 0. Write д′ =

∑
p+q=m д

′
p,q where

д′p,q ∈ L
p,q
(2)
(E) (U ). Note that




д′m−q0,q0

= ¯∂E fm−q0,q0−1 − дm−q0,q0
= 0

д′m−q0+1,q0−1
= θ fm−q0,q0−1 + дm−q0+1,q0−1

д′m−q0+2,q0−2
= дm−q0+2,q0−2

...

д′p0,m−p0

= дp0,m−p0

One can perform the same manner inductively to �nd f ∈ Lm−1

(2)
(E) (U ) so that д0 = д +

D′′ f ∈ Lm,0
(2)

(E) (U ) so thatD′′д0 = 0. By the above argument, we know thatд0 ∈ Γ(U ,Ω
m
X (logD)⊗

�E |U ), which shows the surjectivity of ι.
Now we prove the injectivity of ι. Let д ∈ Γ(U ,Ωm

X (logD) ⊗ �E |U ) ⊂ L
m
(2)
(E) (U ) so that

д = D′′ f . Write f =
∑

p+q=m fp,q where fp,q ∈ L
p,q
(2)
(E) (U ). Then D′′( fm,0+ fm−1,1) = д thanks

to the bidegree condition. Hence
¯∂E fm−1,1 = 0. Applying Proposition 3.16, there is a section

hm−1,0 ∈ L
m−1,0
(2)

(E) (U ) so that
¯∂Ehm−1,0 = −fm−1,1. Then д = D′′( fm,0 + fm−1,1 + D

′′hm−1,0) =

D′′( fm,0 + θhm−1,0) = θ ( fm,0 + θhm−1,0) = θ ( fm,0). The injectivity is thus proved.

When m > n, the exactness of D′′ can be proven in the same way. Let д ∈ Lm
(2)
(E) (U ) so

that D′′д = 0. Applying Proposition 3.16 once again, we can �nd f ∈ Lm−1

(2)
(E) (U ) so that
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D′′ f + д ∈ Ln,m−n
(2)

(E) (U ). As θ (D′′ f + д) = 0, this implies that
¯∂E (D

′′ f + д) = 0, and by

Proposition 3.16 again one can �nd h ∈ Ln,m−n−1

(2)
(E) (U ) so that D′′h = ¯∂Eh = D′′ f + д. This

shows the exactness of D′′ whenm > n. We complete the proof of the theorem. �

3.6. Proof of the main theorem. In this subsection, we will prove the following vanish-

ing theorem for tame harmonic bundle.

Theorem 3.18. Let (X ,ω) be a compact Kähler manifold of dimension n and letD be a simple
normal crossing divisor on X . Let (E, aE,θ ) be the parabolic Higgs bundle on X induced by a
tame harmonic bundle (E,θ ,h) on X ∗ = X − D. Let L be a line bundle on X equipped with a
smooth metric hL so that

√
−1R (hL) ≥ 0 and has at least n −k positive eigenvalues. Let P be a

nef line bundle on X . Then

Hm
(
X , (�E ⊗ Ω•X (logD),θ ) ⊗ L ⊗ P

)
= 0

for anym > n + k .

Proof. We will use the notations in § 3.5. Recall that (X ∗,ωa,N ) is a complete Kähler mani-

fold. Write L := L ⊗ P |X ∗ and we equip it with the metric д = hLhP where hP is properly

chosen as Lemma 3.9. Then д is the restriction to X ∗ of a smooth metric on X . We intro-

duce a new Higgs bundle (Ẽ, ˜θ , ˜h) := (E ⊗L ,θ ⊗ 1L ,h(a,N ) · д). We still use the notation

D′′ := ¯∂Ẽ +
˜θ abusively, and D′′∗ denotes its adjoint with respect to

˜h. We will apply Corol-

lary 2.7 to solve D′′-equation for this new Higgs bundle.

Note that h(a,N )д = hhL by (3.5.1) and Lemma 3.10. By proposition 3.11, the metrized

line bundle (L ,hL ) satis�es the condition in Corollary 2.7 when m > n + k . Hence by

Corollary 2.7 for any section д = Lm
(2)
(X ∗, Ẽ) ˜h,ωa,N

, if D′′д = 0 and m > n + k , there exists

f ∈ Lm−1

(2)
(X ∗, Ẽ) ˜h,ωa,N

so that

D′′ f = д.

Let Lm
(2)
(Ẽ) ˜h,ωa,N

be the sheaf on X (rather than on X ∗!) of germs of locally L2, Ẽ-valued

m-forms, for which both D′′(u) (as a distribution) exist weakly as locally L2
-forms. Namely,

for any open set U ⊂ X , one has

L
m
(2) (Ẽ) (U ) := {u ∈ Lm(2) (U − D, Ẽ) ˜h,ωa,N

| D′′u ∈ Lm+1

(2) (U − D,E) ˜h,ωa,N
}(3.6.1)

Then the above argument proves that the cohomology H i
of the complex of global sections

of the sheaves (L•
(2)
(Ẽ) ˜h,ωa,N

,D′′) vanishes form > n + k .

As д is smooth over the whole X , the metric
˜h ∼ h(a,N ) near D (�x any trivialization of

L ⊗ P ). Hence the natural inclusion

(3.6.2)

�E ⊗ L ⊗ P �E ⊗ L ⊗ P ⊗ ΩX (logD) · · · �E ⊗ L ⊗ P ⊗ Ωn
X (logD)

L0

(2)
(Ẽ) ˜h,ωa,N

L1

(2)
(Ẽ) ˜h,ωa,N

· · · Ln
(2)
(Ẽ) ˜h,ωa,N

· · · L2n
(2)
(Ẽ) ˜h,ωa,N

˜θ ˜θ ˜θ

D ′′ D ′′ D ′′ D ′′ D ′′

is thus also a quasi-isomorphism by Theorem 3.17.

As the complex (L•
(2)
(Ẽ) ˜h,ωa,N

,D′′) is a �ne sheaf, its cohomology computes the hyper-

comology of the complex (�E ⊗ L ⊗ Ω•X (logD), ˜θ ). We thus conclude that Hm (X , (�E ⊗ L ⊗

Ω•X (logD), ˜θ )) = 0 form > n + k . The theorem is proved. �

Remark 3.19. Let us show how to derive the log Girbau vanishing theorem in [HLWY16,

Corollary 1.2] from Theorem A. With the same setting as Theorem A, let (E,θ ,h) := (OX−D, 0,h)
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where h is the canonical metric on the trivial line bundle OX−D . According to the prolon-

gation of (E,θ ,h) de�ned in § 3.2, one has (�E,θ ) = (OX , 0). Hence the Dolbeault complex

in (0.1.1)

Dol(�E,θ ) = OX
0

−→ Ω1

X (logD)
0

−→ · · ·
0

−→ Ωn
X (logD)

which is a direct sum of sheaves of logarithmic p-forms shifting p places to the right:

Dol(�E,θ ) = ⊕np=0
Ω
p
X (logD)[p],

where Ω
p
X (logD)[p] is the obtained by shifting the single degree complex Ω

p
X (logD) in de-

gree p. Hence ifm > n + k , by Theorem 3.18 one has

0 = Hm
(
X ,Dol(�E,θ ) ⊗ L ⊗ P

)
= ⊕np=0

Hm (X ,Ω
p
X (logD) ⊗ P ⊗ N [p])

= ⊕np=0
Hm−p (X ,Ω

p
X (logD) ⊗ P ⊗ N ).

We thus conclude that

Hq (X ,Ω
p
X (logD) ⊗ P ⊗ N )

if p + q > n + k . This is the log Girbau vanishing theorem by Huang-Liu-Wan-Yang.

3.7. Vanishing theorem for parabolic Higgs bundles. Let X be a complex projective

manifold and let D be simple normal crossing divisor on X . For a parabolic Higgs bundle

(E, aE,θ ) on (X ,D), its parabolic Chern classes, denoted by para-ci (E), is the usual Chern

class of
�E with a modi�cation along the boundary divisor D (see, e.g., [AHL19, §3] for

more details). With a polarization, i.e., an ample line bundle H on X , the parabolic degree

para-deg(E) of (E, aE,θ ) is de�ned to be para-c1(E) · H
n−1

. We say (E, aE,θ ) slope stable
if for any coherent torsion free subsheaf V of

�E, with 0 < rankV < rank
�E = rankE and

θ (V ) ⊆ V ⊗ Ω1

X (logD), the condition

para-deg(V )

rank(V )
<

para-deg(E)

rank(E)

is satis�ed, where V carries the induced the parabolic structure from (E, aE,θ ), i.e. aV :=

V ∩ aE. A parabolic Higgs bundle (E, aE,θ ) is poly-stable if it is a direct sum of slope stable

parabolic Higgs bundles. By [IS07], (E, aE,θ ) is called locally abelian if in a Zariski neigh-

borhood of any point x ∈ X there is an isomorphism between the underlying parabolic

vector bundle (E, aE) and a direct sum of parabolic line bundles.

By the celebrated Simpson-Mochizuki correspondence [Moc09, Theorem 9.4], a parabolic

Higgs bundle (E, aE,θ ) on (X ,D) is poly-stable with trivial parabolic degrees and locally

abelian if and only if it is induced by a tame harmonic bundle over X − D de�ned in § 3.2.

Based on this deep theorem, our theorem can thus be restated as follows.

Corollary 3.20. Let (E, aE,θ ) be poly-stable parabolic Higgs bundle on (X ,D) with trivial
parabolic degrees which is locally abelian. Let L be a line bundle on X equipped with a smooth
metric hL so that its curvature

√
−1R (hL) ≥ 0 and has at least n − k positive eigenvalues. Let

P be a nef line bundle on X . Then for the weight 0 �ltration �E of (E, aE,θ ), one has

Hm
(
X , (�E ⊗ Ω•X (logD),θ ) ⊗ L ⊗ P

)
= 0

for anym > dimX + k .

This above corollary generalizes [AHL19, Corollary 7.3] in which they further assume

that L is ample.
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