
ON VASSILIEV INVARIANTS OF BRAID GROUPS OF THE SPHERE

N. KAABI AND V. V. VERSHININ

Abstract. We construct a universal Vassiliev invariant for braid groups of the sphere and the
mapping class groups of the sphere with n punctures. The case of a sphere is different from the
classical braid groups or braids of oriented surfaces of genus strictly greater than zero, since
Vassiliev invariants in a group without 2-torsion do not distinguish elements of braid group of
a sphere.
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1. Introduction

The theory of Vassiliev (or finite type) invariants starts with the works of V. A. Vasiliev
[25, 26] though the ideas which lie in the foundations of this theory can be found in the work
of M. Gousarov [13]. The basic idea is classical in Mathematics: to introduce a filtration
in a complicated fundamental object such that the corresponding associated graded object is
simpler and sometimes possible to describe. The construction of spectral sequences have similar
features. A lot of progress had been done during the last couple of decades in the theory of
Vassiliev invariants of knots, the basic object of the study. Also analogous constructions were
done for braids. After the work of T. Stanford [24] S. Papadima [22] constructed a universal
Vassiliev invariant (“Kontsevich integral”) over Z for classical braids. A similar construction
was done by J. Mostovoy and S. Willerton [21]. For braids on oriented closed surfaces of genus
g ≥ 1 this was done by J. Gonzáles-Meneses and L. Paris [12]. This universal Vassiliev invariant
is not multiplicative, and as it was shown by Bellingeri and Funar [2] a multiplicative one in the
case of positive genus (g ≥ 1) does not exist. Here we consider the case of sphere S2. This case
is interesting because the braid groups on the sphere contain torsion and Vassiliev invariants in
rational numbers does not give a complete set of invariants [5, 6]. Our universal invariant is not
multiplicative. Usually multiplicative universal Vassiliev invariant is constructed over rational
numbers, which is not good for the sphere, but on the other hand there is no interdiction of
existence of such an invariant over the integers.
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We also study the mapping class group of the sphere with n punctures, this group is closely
connected to the braid group of the sphere. It turns out that for these two types of groups
as for the braid groups examined before the study of Vassiliev invariants, topological by their
nature reduces to purely algebraic constructions and facts.

The authors are thankful to Paolo Bellingeri for valuable remarks.
This work was finished during the visit of the second author to the IHES, so he would like

to express his great appreciation to the administration of the Institute for the invitation and
the excellent conditions of work.

2. Braid groups of the sphere and the mapping class groups of the sphere
with n punctures

Let M be a topological space and let Mn be the n-fold Cartesian product of M . The n-th
ordered configuration space F (M, n) is defined by

F (M, n) = {(x1, . . . , xn) ∈ Mn | xi 6= xj for i 6= j}
with subspace topology of Mn. The symmetric group Σn acts on F (M, n) by permuting coor-
dinates. The orbit space

B(M, n) = F (M, n)/Σn

is called the n-th unordered configuration space. The braid group Bn(M) is defined to be the
fundamental group π1(B(M, n)). The pure braid group Pn(M) is defined to be the fundamental
group π1(F (M, n). From the covering F (M, n) → F (M, n)/Σn, we get a short exact sequence
of groups

(2.1) {1} → Pn(M) → Bn(M) → Σn → {1}.
We will use later the following classical Fadell-Neuwirth Theorem.

Theorem 2.1. [7] For n > m the coordinate projection (forgetting of n−m coordinates)

δ(n)
m : F (M, n) → F (M, m), (x1, . . . , xn) 7→ (x1, . . . , xm)

is a fiber bundle with fiber F (M r Qm, n−m), where Qm is a set of m distinct points in M .

In this work we consider the classical braids which are braids of the disc: M = D2, and the
case of the sphere S2.

Usually the braid group Brn = Bn(D2) is given by the following Artin presentation [1]. It
has the generators σi, i = 1, ..., n− 1, and two types of relations:

(2.2)

{
σiσj = σj σi, if |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 .

The generators ai,j, 1 ≤ i < j ≤ n of the pure braid group Pn (of a disc) can be described as
elements of the braid group Brn by the formula:

ai,j = σj−1...σi+1σ
2
i σ
−1
i+1...σ

−1
j−1.

The defining relations among ai,j, which are called the Burau relations ([4], [20]) are as follows:

(2.3)


ai,jak,l = ak,lai,j for i < j < k < l and i < k < l < j,

ai,jai,kaj,k = ai,kaj,kai,j for i < j < k,

ai,kaj,kai,j = aj,kai,jai,k for i < j < k,

ai,kaj,kaj,la
−1
j,k = aj,kaj,la

−1
j,kai,k for i < j < k < l.
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It was proved by O. Zariski [28] and then rediscovered by E. Fadell and J. Van Buskirk
[8] that a presentation of the braid group on a 2-sphere can be given with the generators σi,
i = 1, ..., n − 1, the same as for the classical braid group, satisfying the braid relations (2.2)
and the following sphere relation:

(2.4) σ1σ2 . . . σn−2σ
2
n−1σn−2 . . . σ2σ1 = 1.

Let ∆ be the Garside’s fundamental element in the braid group Brn [9]. It can be expressed
in particular by the following word in canonical generators:

∆ = σ1 . . . σn−1σ1 . . . σn−2 . . . σ1σ2σ1.

If we use Garside’s notation Πt ≡ σ1 . . . σt, 1 ≤ t ≤ n− 1, then ∆ ≡ Πn−1 . . . Π1.
For the pure braid group on a 2-sphere let us introduce the elements ai,j for all i, j by the

formulas:

(2.5)

{
aj,i = ai,j for i < j ≤ n,

ai,i = 1.

The pure braid group on a 2-sphere has the generators ai,j which satisfy the Burau relations
(2.3), the relations (2.5), and the following relations [10]:

ai,i+1ai,i+2 . . . ai,i+n−1 = 1 for all i ≤ n,

with the convention that indices are considered mod n: k + n = k. Note that ∆2 is a pure
braid and can be expressed by the following formula

∆2 = (a1,2a1,3 . . . a1,n)(a2,3a2,4 . . . a2,n) . . . (an−1,n) =

(a1,2)(a1,3a2,3)(a1,4a2,4a3,4) . . . (a1,n . . . . . . an−1,n).

This element of the braid group generates its center.
Another object of our study is the mapping class groups of the sphere with n punctures. The

(general) mapping class group is an important object in Topology, Complex Analysis, Algebraic
Geometry and other domains. It is a rare situation when the method of Algebraic Topology
works perfectly well, the application of the functor of fundamental group completely solves
the topological problem: group of isotopy classes of homeomorphisms is described in terms of
automorphisms of the fundamental group of the corresponding surface, as the Dehn-Nilsen-Baer
theorem states (see [15], for example).

Let Sg,b,n be an oriented surface of genus g with b boundary components and we remind
that Qn denotes a set of n punctures (marked points) in the surface. Consider the group
Homeo(Sg,b,n) of orientation preserving self-homeomorphisms of Sg,b,n which fix pointwise the
boundary (if b > 0) and map the set Qn into itself.

Let Homeo0(Sg,b,n) be the normal subgroup of self-homeomorphisms of Sg,b,n which are iso-
topic to identity. Then the mapping class group Mg,b,n is defined as a quotient group

Mg,b,n = Homeo(Sg,b,n)/ Homeo0(Sg,b,n).

These groups are closely connected with braid groups. W. Magnus in [18] interpreted the
n-braid group as the mapping class group of an n-punctured disc with the fixed boundary:

Brn
∼= M0,1,n.
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Like braid groups the groups Mg,b,n has a natural epimorphism to the symmetric group Σn with
the kernel called the pure mapping class group PM g,b,n, so there exists an exact sequence:

1 → PM g,b,n → Mg,b,n → Σn → 1.

Geometrically the pure mapping class group PM g,b,n consists of isotopy classes of homeomor-
phisms that preserve the punctures pointwise.

In the paper we consider the pure mapping class group PM0,0,n of a punctured 2-sphere (so
the genus is equal to 0) with no boundary components that we simply denote by PMn; the
same way we denote further M0,0,n simply by Mn.

The group PMn is closely related to the pure braid group Pn(S2) on the 2-sphere as well as
its non-pure analogue Mn is related with the (total) braid group Bn(S2) on the 2-sphere.

W. Magnus obtained in [18] (see also [19]) a presentation of the mapping class group Mn for
the n-punctured 2-sphere. It has the same generators as Bn(S2) and a complete set of relations
consists of (2.2), (2.4) and the following relation

(2.6) (σ1σ2 . . . σn−2σn−1)
n = 1.

For the generators σ1, σ2, . . . , σn−2, σn−1, subject to the braid relations (2.2) the condition
(2.6) is equivalent to the following relation

∆2 = 1.

Using Theorem 2.1 we have the following morphism of fibrations

(2.7)

F (D2 r {p1, p2}, n− 2)
i

- F (D2, n)
δ2- F (D2, 2)

F (S2 r {p1, p2, p3}, n− 2)
? i

- F (S2, n + 1)
? δ3- F (S2, 3),

?

where the vertical lines are induced by an inclusion of a disc into the sphere. Let us denote by
Pn(S2

3) the pure braid group on n strands of a 2-sphere with three points deleted or equivalently
the subgroup of the pure braid group on n + 2 strands of a disc where (say, the last) two
strands are fixed as trivial (unbraided) strands which is also equal to the fundamental group of
F (S2 r {p1, p2, p3}, n).

The following statement follows from the normal forms of the groups Pn(S2) and PMn given
in [10] and on the geometrical level it follows from diagram (2.7) and it was expressed in [11].
Note that the groups P2(S

2) and PM3 are trivial.

Theorem 2.2. (i) The pure braid group on a 2-sphere Pn(S2) for n ≥ 3 is isomorphic to the
direct product of the cyclic group C2 of order 2 (generated by ∆2) and PMn.

(ii) The pure braid group Pn for n ≥ 2 is isomorphic to the direct product of the infinite
cyclic group C (generated by ∆2) and PMn+1.

(iii) The groups PMn and Pn−3(S
2
3) are isomorphic for n ≥ 4.
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(iv) There is a commutative diagram of groups and homomorphisms

(2.8)

Pn
∼= PMn+1 × C

Pn(S2) ∼=

ρp

?

PMn × C2,

δ × ρ

?

where ρp is the canonical epimorphism Pn → Pn(S2), δ is induced by the Fadell-Neuwirth
fibration and ρ is the canonical epimorphism of the infinite cyclic group onto the cyclic group
of order 2.

The isomorphism of the part (i) of Theorem 2.2 is compatible with the homomorphisms
pi : Pn(S2) → Pn−1(S

2) and pmi : PMn → PMn−1 consisting of deleting one strand or
forgetting one point, that means that the following diagram is commutative

Pn(S2) ∼= PMn × C2

Pn−1(S
2) ∼=

pi

?

PMn−1 × C2.

pmi × id

?

3. Lie algebras from descending central series of groups

For a group G the descending central series

G = Γ1 > Γ2 > · · · > Γi > Γi+1 > . . . .

is defined by the formula

Γ1 = G, Γi+1 = [Γi, G].

This series of groups gives rise to the associated graded Lie algebra (over Z) gr∗Γ(G)

gri
Γ(G) = Γi/Γi+1.

A presentation of the Lie algebra gr∗Γ(Pn) for the pure braid group was done in the work
of T. Kohno [16], and can be described as follows. It is the quotient of the free Lie algebra
L[Ai,j| 1 ≤ i < j ≤ n] generated by elements Ai,j with 1 ≤ i < j ≤ n modulo the “infinitesimal
braid relations” or “horizontal 4T relations” given as follows:

(3.1)


[Ai,j, As,t] = 0, if {i, j} ∩ {s, t} = φ,

[Ai,j, Ai,k + Aj,k] = 0, if i < j < k,

[Ai,k, Ai,j + Aj,k] = 0, if i < j < k.

It is convenient sometimes to have conventions like (2.5). So let us introduce the generators
Ai,j, 1 ≤ i, j ≤ n, not necessary i < j, by the formulae{

Aj,i = Ai,j for 1 ≤ i < j ≤ n,

Ai,i = 0 for all 1 ≤ i ≤ n.
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For this set of generators the defining relations (3.1) can be rewritten as follows

(3.2)


Ai,j = Aj,i for 1 ≤ i, j ≤ n,

Ai,i = 0 for 1 ≤ i ≤ n,

[Ai,j, As,t] = 0, if {i, j} ∩ {s, t} = φ,

[Ai,j, Ai,k + Aj,k] = 0 for all different i, j, k.

Y. Ihara in [14] gave a presentation of the Lie algebra gr∗Γ(Pn(S2)) of the pure braid group
of a sphere. It is the quotient of the free Lie algebra L[Bi,j| 1 ≤ i, j ≤ n] generated by elements
Bi,j with 1 ≤ i, j ≤ n modulo the following relations:

(3.3)


Bi,j = Bj,i for 1 ≤ i, j ≤ n,

Bi,i = 0 for 1 ≤ i ≤ n,

[Bi,j, Bs,t] = 0, if {i, j} ∩ {s, t} = φ,∑n
j=1 Bi,j = 0, for 1 ≤ i ≤ n.

It is also a quotient algebra of the Lie algebra gr∗Γ(Pn): the relations of the last type in (3.2)
are the consequences of the third and the forth type relations in (3.3).

We shall use the following results which were proved in [17].

Theorem 3.1. (i) The graded Lie algebra gr∗Γ(PMn) is the quotient of the free Lie algebra
L[Bi,j| 1 ≤ i, j ≤ n] modulo the following relations:

(3.4)



Bi,j = Bj,i for 1 ≤ i, j ≤ n,

Bi,i = 0 for 1 ≤ i ≤ n,

[Bi,j, Bs,t] = 0, if {i, j} ∩ {s, t} = φ,∑n
j=1 Bi,j = 0, for 1 ≤ i ≤ n,∑n−1
i=1

∑n
j=i+1 Bi,j = 0.

(ii) The graded Lie algebra gr∗Γ(PMn) is the quotient of the free Lie algebra L[Bi,j| 1 ≤ i, j ≤
n − 1] generated by the elements Bi,j, 1 ≤ i, j ≤ n − 1, (smaller number of generators than in
(i)) modulo the following relations:

(3.5)



Bi,j = Bj,i for 1 ≤ i, j ≤ n− 1,

Bi,i = 0 for 1 ≤ i ≤ n− 1,

[Bi,j, Bs,t] = 0, if {i, j} ∩ {s, t} = ∅,
[Bi,j, Bi,k + Bj,k] = 0 for all different i, j, k,∑n−2

i=1

∑n−1
j=i+1 Bi,j = 0.

Corollary 3.1. A presentation of the Lie algebra gr∗Γ(Pn(S2)) can be given with generators Ai,j

with 1 ≤ i < j ≤ n− 1, modulo the following relations:
[Ai,j, As,t] = 0, if {i, j} ∩ {s, t} = φ,

[Ai,j, Ai,k + Aj,k] = 0 for all different i, j, k,

2(
∑n−2

i=1

∑n−1
j=i+1 Ai,j) = 0.

So the element
∑n−2

i=1

∑n−1
j=i+1 Ai,j of order 2 generates the central subalgebra in gr∗Γ(Pn(S2)).
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4. Universal Vassiliev invariants for Mn and Bn(S2)

We sketch briefly the basic ideas of the theory of Vassiliev invariants for braids. For the
classical braids (i.e. of a disc) it can be found, for example in [22].

Let A be an abelian group, then the group V of all maps (non necessary homomorphisms)
from Bn(S2) to A is called the group of invariants of Bn(S2):

V = Map(Bn(S2), A).

If A is a commutative ring then V becomes an A-module.
Let Z[Bn(S2)] be the group ring of the group Bn(S2), then

Map(Bn(S2), A) = Hom(Z[Bn(S2)], A).

where Hom(Z[Bn(S2)], A) is an abelian group of homomorphisms of the group Z[Bn(S2)] into
the group A.

We can enlarge an invariant v ∈ V for singular braids using the rule

v(singular crossing of i-th and i + 1 strands) = v(σi)− v(σ−1
i ).

The elements σi − σ−1
i ∈ Z[Bn(S2)], i = 1, . . . , n − 1, generate an ideal of the ring Z[Bn(S2)]

which we denote by W ; degrees of his ideal define a multiplicative filtration (Vassiliev filtration)
Wm = Φm(Z[Bn(S2)]). An invariants v ∈ V is called of degree m if v(x) = 0 for all x ∈
Φm+1(Z[Bn(S2)]). So the group Vm of invariants of degree m is defined as

Vm = Hom(Z[Bn(S2)]/Φm+1(Z[Bn(S2)]), A).

The advantage of braids is that this filtration can be characterized completely algebraically.
Let S be a map from the symmetric group Σn:

S : Σn → Bn(S2)

which is a section of the canonical epimorphism Bn(S2) → Σn (2.1). It is not a homomorphism
which does not exist with such a condition. For example, we can set up S(si) = σi. Let I be
the augmentation ideal of the group ring Z[Pn(S2)]. The powers of I generate a filtration of
the ring Z[Pn(S2)] and hence of the ring Z[Pn(S2)]⊗ Z[Σn].

Proposition 4.1. There is an isomorphism of abelian groups with filtration

Z[Pn(S2)]⊗ Z[Σn] ∼= Z[Bn(S2)],

which is induced by the canonical inclusion of the pure braids and the map S, the ring Z[Bn(S2)]
is equipped with Vassiliev filtration.

�
The same constructions can be done for the mapping class group Mn and the analogue of

Proposition 4.1 is true.
Let c be the generator of the infinite cyclic group C and let Z[C] be the group ring of C. We

denote by C2 the cyclic group of the order 2 with the generator a, Z[C2] is the group ring of
C2 and we define the homomorphism

ρ : Z[C] → Z[C2],

by the formula

ρ(c) = a.
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Proposition 4.2. There are isomorphisms of rings

Z[Pn] ∼= Z[PMn+1]⊗ Z[C],

Z[Pn(S2)] ∼= Z[PMn]⊗ Z[C2],

which can be included into the following commutative diagram

Z[Pn] ∼= Z[PMn+1]⊗ Z[C]

Z[Pn(S2)] ∼=

ρp

?

Z[PMn]⊗ Z[C2],

δ⊗ρ

?

where the morphisms ρp and δ in the diagram are induced by the corresponding morphisms of
the diagram (2.8).

Proof. It follows from Theorem 2.2. �

Proposition 4.3. The intersections of Vassiliev filtration for Z[Bn(S2)] and Z[Mn] are trivial⋂
m≥0

Φm(Z[Bn(S2)]) = 0,
⋂
m≥0

Φm(Z[Mn]) = 0.

The groups Φm(Z[Mn])/Φm+1(Z[Mn]) are torsion free. The group PMn is residually torsion
free nilpotent, the group Pn(S2) is residually nilpotent.

Proof. Proposition 4.1 reduces the question to the I-adic filtration of Z[PMn] and Z[Pn(S2)].
In the case of Z[PMn] the situation is the same as for the pure braid group of a disc, PMn is
a subgroup of Pn−1 (cf Theorem 2.2) and hence it is residually torsion free nilpotent. For the
group ring Z[Pn(S2)] because of its structure as the tensor product (Proposition 4.2) we have

Im(Z[Pn(S2)]) ∼= Im(⊕m
k=0I

m−k(Z[PMn])⊗ Ik(Z[C2]) → Z[Pn(S2)]),

where Im denotes as usual the image of the map given in parentheses. This group ring can be
also presented as the following direct sum

(4.1) Z[Pn(S2)] ∼= Z[PMn]⊕ Z[PMn]{(a− 1)}

where by a we denoted the generator of cyclic group C2 of order 2. For an element z ∈ Z[PMn]
let

z =
∑

i

nibi.

be a decomposition of z with respect to the base of the free abelian group Z[PMn]. Let the
greatest common divisor of the set of numbers {ni} be equal to 2kn where n is coprime with 2.
Let v(z) be the order function (see [3, chapter III, § 2.2], for example) of the I-adic filtration
on Z[PMn] then the order function v2(z) of the I-adic filtration on the second summand in the
right hand part of formula (4.1) is given as follows

v2(z(a− 1)) = v(z) + k + 1.

The intersection
⋂∞

k=0 Ik(Z[C2]) is trivial, the group Z[PMn] is residually torsion free nilpotent,
so

∞⋂
k=0

Ik(Z[Pn(S2)]) = 0.
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We remind that integral dimension subgroups (for the group Pn(S2)) are defined by the formula

Dm(Pn(S2)) = Pn(S2) ∩ (1 + Im),

where the intersection is taken in Z[Pn(S2)]. Hence the intersection of Dm(Pn(S2) is trivial the
group Pn(S2) is residually nilpotent (of course not residually torsion free nilpotent); the last
fact can be also seen directly. �

The filtered algebra Pn is defined as the universal enveloping algebra of the Lie algebra
gr∗Γ(Pn) for the standard pure braid group

Pn = U(gr∗Γ(Pn)).

Its completion P̂n is the target of the universal Vassiliev invariant for the pure braids [22]

µ : Z[Pn] → P̂n.

Let PMn be the universal enveloping algebra of the Lie algebra gr∗Γ(PMn); so as an associative
algebra it has the generators which are in one-to-one correspondence with the generators Bi,j of
gr∗Γ(PMn), say it will be xi,j, 1 ≤ i, j ≤ n, which satisfy the associative form of relations (3.5).
Also we denote by Pn(S2) the universal enveloping algebra of the Lie algebra gr∗Γ(Pn(S2)).

As usual one can define a Hausdorff filtration (intersection is zero) on PMn and on Pn(S2) by
giving a degree 1 to each generator xi,j. The canonical epimorphism of groups ρp : Pn → Pn(S2)
induces an epimorphism of filtered algebras

ρa : Pn → Pn(S2)

We denote by P̂Mn the completion of PMn with respect to the topology, defined by this

filtration. The same way P̂n(S2) is the completion of Pn(S2). The algebra P̂Mn can be also
described as an algebra of noncommutative power series of xi,j factorized by the closed ideal
generated by the left hand sides of relations (3.5).

Let Â be an associative algebra with unit such that as an abelian group it is isomorphic to
the direct sum of integers and 2-adic numbers Z ⊕ Z2. We denote the generator of the first

summand by 1 and the generator of the second summand by x. The multiplication in Â is
given by the rule

x2 = −2x.

This algebra is filtered as follows Φ0 = Â, Φ1 = Z2, Φm is generated by 2mx, for m = 2, 3 . . . .
We define the homomorphisms

α : Z[C2)] → Â,

χ : Z[C] → Z[[y]],

β : Z[[y]] → Â

by the formulae

α(a) = 1 + x, χ(c) = 1 + y, β(y) = x.

Proposition 4.4. The homomorphisms of rings α and χ respect the filtration and induce a
multiplicative isomorphism at the associated graded level. They fit in the following commutative
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diagram of homomorphisms of rings.

Z[C]
ρ

- Z[C2]

Z[[y]]

χ

? β
- Â.

α

?

Proof. It suffices to verify that

(a− 1)2 = a2 − 2a + 1 = 2− 2a = −2(a− 1).

�

Proposition 4.5. There are isomorphisms of filtered rings

P̂n
∼= P̂Mn+1⊗̂Z[[y]],

P̂n(S2) ∼= P̂Mn⊗̂Â,

which can be included into the following commutative diagram of filtered ring homomorphisms

P̂n
∼= P̂Mn+1⊗̂Z[[y]]

P̂n(S2) ∼=

ρ̂a

?

P̂Mn⊗̂Â,

δ̂⊗̂β

?

where the morphisms ρ̂a and δ̂ in the diagram are induced by the corresponding morphisms of
the diagram (2.8).

Proof. The statements follow from the facts about the direct product of the Lie algebras similar
to Theorem 2.2. �

The maps

κ : Z[PMn] → P̂Mn

and

KM : Z[Mn] → M̂n

can be defined following the same steps as the definition of the universal Vassiliev invariant in
[22]. However it is more simple to use the universal invariant from [22, Theorem 1.1] and define
κ as the following composition

Z[PMn+1] → Z[Pn]
µ→ P̂n → P̂Mn+1,

where the first map is the canonical inclusion and the last one is the canonical projection. We
can also reason inversely: at first construct κ, then define the map κ̂⊗ χ as the composition

Z[PMn+1]⊗ Z[C]
κ⊗χ→ PMn+1⊗Z[[y]] → PMn+1⊗̂Z[[y]],
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where the last map is the completion, and then define µ using the following diagram

(4.2)

Z[Pn] ∼=Z[PMn+1]⊗ Z[C]

P̂n
∼=

µ

?

P̂Mn+1⊗̂Z[[y]].

κ̂⊗ χ

?

The map µ defined by (4.2) is a universal Vassiliev invariant for the classical braids, though it
may not coincide with the map constructed in [22] which is not unique.

Theorem 4.1. The map

κ : Z[PMn] → P̂Mn

respects the filtration and induces a multiplicative isomorphism at the associated graded level.

Proof. Two proofs can be done. The first one is to follow the steps of the proof of the same
fact for the classical pure braid groups [22]; this is possible because the group PMn has the
similar structure as Pn: it is an iterated semidirect product of free groups [10]. In particular
the algebra PMn has no torsion and the Quillen map [23]

(4.3) PMn → gr∗IZ[PMn]

to the graded object associated to the I-adic filtration of the ring Z[PMn] becomes an isomor-
phism with gr∗(κ) as its inverse. Another proof is to apply the fact that Pn is the product of
PMn with the infinite cyclic group generated by the center of Pn, and then use Proposition 4.2
and diagram (4.2). �

We define the map

λ : Z[Pn(S2)] → P̂n(S2)

using the following diagram

Z[PMn]⊗ Z[C2]∼= Z[Pn(S2)]

P̂Mn⊗̂Â

κ̂⊗ α

?

∼= P̂n(S2).

λ

?

Theorem 4.2. The map

λ : Z[Pn(S2)] → P̂n(S2)

respects the filtration, induces a multiplicative isomorphism at the associated graded level and
fits in the following diagram of filtered rings

(4.4)

Z[Pn]
ρp- Z[Pn(S2)]

P̂n

µ

?
ρ̂a- P̂n(S2).

λ

?
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Proof. The maps κ and α respect the filtration and induce a multiplicative isomorphism at the
associated graded level, so this is true for κ̂⊗ α. We continue diagram (4.2)

Z[Pn]∼= Z[PMn+1]⊗ Z[C]
δ ⊗ ρ

- Z[PMn]⊗ Z[C2]∼= Z[Pn(S2)]

P̂n

µ

?
∼= P̂Mn+1⊗̂Z[[y]]

κ̂⊗ χ

?
δ̂⊗̂β

- P̂Mn⊗̂Â

κ̂⊗ α

?

∼= P̂n(S2).

λ

?

Its outer frame is diagram (4.4). �

The symmetric group Σn acts on the algebras P̂Mn and P̂n(S2) by the action on the indices
of xi,j:

σ(xi,j) = xσ(i),σ(j), σ ∈ Σn.

This action preserves the defining relations (3.5) and (3.3). We define the following filtered
algebras as the semidirect products with respect to the given action:

(4.5) M̂n = P̂Mn o Z[Σn],

(4.6) B̂n(S2) = P̂n(S2) o Z[Σn].

According to the Markov normal form for Bn(S2) proved by R. Gillet and J. Van Buskirk in
[10] every element b of B(S2) can be written uniquely in the form

b = qS(p),

where q ∈ Pn(S2) and p is the permutation defined by the braid b. We define the map

K : Z[Bn(S2)] → B̂n(S2)

by the formula

(4.7) K(b) = λ(q)⊗ p.

Theorem 4.3. The homomorphisms of abelian groups

KM : Z[Mn] → M̂n,

K : Z[Bn(S2)] → B̂n(S2)

are injections, they respect the filtration, induce a multiplicative isomorphism at the associated
graded level and fit in the following diagram of filtered rings

Z[Pn(S2)]
ρp- Z[Mn]

P̂(S2)n

µ

?
ρ̂a - M̂n.

λ

?

Proof. It follows from Proposition 4.1, Theorem 4.2 and definitions (4.5 – 4.6), (4.7). The part
about injectivity follows from Proposition 4.3. �
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Corollary 4.1. The groups Z[Mn]/Φm(Z[Mn]) and M̂n/Φ
m(M̂n) are isomorphic and are tor-

sion free. There are also isomorphisms of abelian groups

Z[Bn(S2)]/Φm(Z[Bn(S2)]) ∼= B̂n(S2)/Φm(B̂n(S2)) ∼=
m−1⊕
k=0

(M̂n/Φ
m−k(M̂n))⊗ Z/2k.

�

Corollary 4.2. Any Vassiliev invariant of Bn(S2) to an abelian group without 2-torsion does
not distinguish every couple of different elements of Bn(S2). Vassiliev invariants to a group
which has an element of order 2 distinguish any couple of different elements in Bn(S2).

In [5, 6] M. Eisermann gave the example of a couple of elements in Bn(S2) which are not
distinguished by Vassiliev invariants in rational numbers. Corollary 4.2 explains this situation.

5. Example

The pure braid group P4(S
2) of a 2-sphere is isomorphic to the direct product of the cyclic

group of order 2 (generated by ∆2) and the pure braid group on one strand of a 2-sphere with
three points deleted, it is the fundamental group of disc with two points deleted, that is a free
group F2 on two generators. Its associated graded Lie algebra is a direct sum of central Z/2
and the free Lie algebra on two generators. The pure mapping class group PM0,4 is isomorphic
to a free group on two generators. According to Theorem 3.1 its associated graded Lie algebra
is the free Lie algebra on two generators. The universal Vassiliev invariant for PM0,4 is nothing

but Magnus expansion Z[F2]
µe→ Z〈〈x1, x2〉〉 and the universal invariant for P4(S

2) is

Z[F2]⊗ Z[C2]
µ̂e⊗α→ Z〈〈x1, x2〉〉⊗̂Â.
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