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Abstract

We initiate a new line of investigation on branching problems for
generalized Verma modules with respect to reductive symmetric pairs
(g, g′). In general, Verma modules may not contain any simple mod-
ule when restricted to a reductive subalgebra. In this article we give a
necessary and sufficient condition on the triple (g, g′, p) such that the
restriction X|g′ always contains simple g′-modules for any g-module X
lying in the parabolic BGG category Op attached to a parabolic subal-
gebra p of g. Formulas are derived for the Gelfand–Kirillov dimension
of any simple module occurring in a simple generalized Verma module.
We then prove that the restriction X|g′ is generically multiplicity-free
for any p and any X ∈ Op if and only if (g, g′) is isomorphic to
(An, An−1), (Bn, Dn), or (Dn+1, Bn). Explicit branching laws are also
presented.
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1 Program

Branching problems in representation theory ask how irreducible modules
decompose when restricted to subalgebras. In the context of the Bernstein–
Gelfand–Gelfand category O of a semisimple Lie algebra g, branching prob-
lems are seemingly simple, however, it turns out that the restrictions behave
wildly in general. For instance, the restrictions X|g′1 and X|g′2 of a g-module
X lying in O may be completely different even when two reductive subalge-
bras g′1 and g′2 are conjugate to each other by an inner automorphism (see
Examples 4.13, 4.14 for more details):

Example 1.1. The restriction X|g′1 does not contain any simple g′1-module,
whereas X|g′2 decomposes into an algebraic direct sum of simple g′2-modules.

Example 1.2. The Gelfand–Kirillov dimension of any simple g′1-module oc-
curring in X|g′1 is larger than that of any simple g′2-module in X|g′2.

The analysis of such phenomena brings us to the following problem to
single out a good framework for the restriction X|g′ where g′ is a (generalized)
reductive subalgebra of g and X Verma module of g.

Problem A. When does the restriction X|g′ contain a simple g′-module?

Further, we raise the following problems when X|g′ contains simple g′-modules.

Problem B. Find the ‘size’ of simple g′-modules occurring in X|g′ .

Problem C. Estimate multiplicities of simple g′-modules occurring in X|g′ .

Problem D. Find branching laws, in particular, for multiplicity-free cases.

Let us explain briefly our main results. We write B for the full flag variety
of g, and G′ for the set of conjugacy classes of g′ under the group G := Int(g)
of inner automorphisms. Then the ‘framework’ of the restriction X|h for
X ∈ O and h ∈ G′ is classified by the quotient space G\(B × G′) under
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the diagonal action of G. More generally, we formulate such a statement in
Theorem 2.1 in the parabolic BGG category Op (see Subsection 2.1) for an
arbitrary parabolic subalgebra p of g.

In this article, we highlight the case where (g, g′) is a symmetric pair. A
special example of symmetric pairs is the diagonal case (g1 ⊕ g1, diag(g1)),
for which branching laws describe the decomposition of the tensor product
of two representations (e.g. fusion rules).

For symmetric pairs (g, g′), the cardinality of G-orbits on B×G′ is finite,
and our solution to Problem A in the category Op is described in terms of the
finite set G\(P × G′). Namely, we prove that the restriction X|g′ contains
simple g′-modules for any X ∈ Op if and only if (p, g′) lies in a closed G-orbit
on P×G′ (Theorem 4.1).

In the study of Problem B, we use associated varieties (see e.g. [6, 15]) as a
measure of the ‘size’ of g′-modules. We see that the associated variety Vg′(Y )
of a simple g′-module Y occurring in the restriction X|g′ is independent of
Y if X is a simple g-module. The formulas of Vg′(Y ) and its dimension
(Gelfand–Kirillov dimension) are derived in Theorem 4.11.

It is notorious that multiplicities are often infinite in the branching laws
for irreducible unitary representations when restricted to symmetric pairs,
see [7]. In contrast, we prove in Theorem 4.15 that multiplicities are always
finite in the branching laws with respect to symmetric pairs in the category
O, which gives an answer to Problem C.

Particularly interesting are ‘multiplicity-free branching laws’ where any
simple g′-module occurs in the restriction X|g′ at most once. We give two
general multiplicity-free theorems with respect to symmetric pairs (g, g′) in
the parabolic category Op:

1) p special, (g, g′) general (Theorem 5.1),

2) p general, (g, g′) special (Theorem 5.4),

and then find branching laws corresponding to closed orbits in G\(P×G′).
Partial results of this article were presented at the conference in honor of

Vinberg’s 70th birthday at Bielefeld in Germany in 2007 and at the Winter
School on Geometry and Physics in Cech Republic in 2010. The author is
grateful to the organizers for their warm hospitality. In a subsequent paper
[10], we shall apply the results here as a guiding principle to the construction
of intertwining differential operators in parabolic geometry.

Notation: N = {0, 1, 2, · · · }, N+ = {1, 2, 3, · · · }.
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2 Branching problem of Verma modules

In general, Verma modules may not contain any simple g′-module when re-
stricted to a reductive subalgebra g′. In this section, we use the geometry of
the double coset space NG(g′)\G/P and clarify the problem in Theorem 2.1,
which will then serve as a foundational setting of branching problems for the
category Op in Theorem 4.1.

2.1 Generalized Verma modules

We begin with a quick review of the (parabolic) BGG category Op and fix
some notation. See [5] for a comprehensive introduction to this area.

Let g be a semisimple Lie algebra over C, and j a Cartan subalgebra. We
write ∆ ≡ ∆(g, j) for the root system, gα (α ∈ ∆) for the root space, and α∨

for the coroot. We fix a positive system ∆+, and define a Borel subalgebra
b = j + n with nilradical n := ⊕α∈∆+gα. The BGG category O is defined
to be the full subcategory of g-modules whose objects are finitely generated
g-modules X such that X are j-semisimple and locally n-finite [2].

Let p be a standard parabolic subalgebra, and p = l+u its Levi decomposi-
tion with j ⊂ l. We set ∆+(l) := ∆+∩∆(l, j), and define n−(l) := ⊕α∈∆+(l)g−α.
The parabolic BGG category Op is defined to be the full subcategory of O
whose objects X are locally n−(l)-finite. Then Op is closed under submod-
ules, quotients, and tensor products with finite dimensional representations.

The set of λ for which λ|j∩[l,l] is dominant integral is denoted by

Λ+(l) := {λ ∈ j∗ : 〈λ, α∨〉 ∈ N for all α ∈ ∆+(l)}.

We write Fλ for the finite dimensional simple l-module with highest weight
λ, inflate Fλ to a p-module via the projection p → p/u ' l, and define the
generalized Verma module by

M g
p (λ) ≡ M g

p (Fλ) := U(g)⊗U(p) Fλ. (2.1)

Then M g
p (λ) ∈ Op, and any simple object in Op is the quotient of some

M g
p (λ). We say M g

p (λ) is of scalar type if Fλ is one-dimensional, or equiva-
lently, if 〈λ, α∨〉 = 0 for all α ∈ ∆(l).

Let ρ be half the sum of positive roots. If λ ∈ Λ+(l) satisfies

〈λ + ρ, β∨〉 6∈ N+ for all β ∈ ∆+ \∆(l), (2.2)
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then M g
p (λ) is simple, see [3].

For p = b, we simply write M g(λ) for M g
b (λ). We note that Ob = O by

definition.

2.2 Framework of branching problems

Let g′ be a subalgebra of g, and p a parabolic subalgebra of g. We denote
by G′ and P the set of conjugacy classes of g′ and p, respectively. Let P
be the parabolic subgroup of G = Int(g) with Lie algebra p, and define the
normalizer of g′ as

NG(g′) := {g ∈ G : Ad(g)g′ = g′}.

Then we have natural bijections: G/P ' P, G/NG(g′) ' G′, and hence

G\(P×G′) ' NG(g′)\P ' G′/P ' NG(g′)\G/P. (2.3)

Here, we let G act diagonally on P×G′ in the left-hand side of (2.3).
Let S be the set of complete representatives of the double coset NG(g′)\G/P ,

and we write g′s := Ad(s)−1g′ for s ∈ S. Then the branching problem for
Op with respect to a subalgebra belonging to G′ is ‘classified’ by the double
coset NG(g′)\G/P in the following sense:

Theorem 2.1. For any X ∈ Op and any h ∈ G′, there exists s ∈ S such
that X|h ' X̃|g′s for some X̃ ∈ Op via a Lie algebra isomorphism between h

and g′s.

Proof of Theorem 2.1. Given h ∈ G′, we take s ∈ S and q ∈ P such that
Ad((sq)−1)g′ = h. Clearly, we have a Lie algebra isomorphism Ad(q−1) :
g′s

∼→ h.
For X ∈ Op, we define a new g-module structure on X by

Z ·
q
v := (Ad(q)−1Z) · v for Z ∈ g, v ∈ X.

Since P normalizes p, this new module, to be denoted by X̃, lies in Op.
Then, for any Lie subalgebra v of g, the restriction X̃|v is isomorphic to
the restriction X|Ad(q)−1v via the Lie algebra isomorphism v ' Ad(q)−1v.
Applying this to v := g′s, we get the following isomorphism:

X|h = X|Ad(q)−1 Ad(s)−1g′ ' X̃|g′s
via the Lie algebra isomorphim Ad(q) : h

∼→ g′s. Theorem 2.1 is thus proved.
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Remark 2.2. If (g, g′) is a semisimple symmetric pair (see Subsection 4.1),
then S is a finite set (Matsuki [11]).

3 Discretely decomposable branching laws

In this section, we bring the concept of ‘discretely decomposable restrictions’
to the branching problem for the BGG category Op, and prove that the
restriction X|g′ contains simple g′-modules for X ∈ Op if p lies in a closed
G′-orbit on the generalized flag variety P. In particular, it is the case if p is
g′-compatible (Definition 3.7). Under this assumption the character identities
are derived for the restriction X|g′ (Theorem 3.10).

3.1 Discretely decomposable modules O
Suppose that g is a reductive Lie algebra.

Definition 3.1. We say a g-module X is discretely decomposable if there
is an increasing filtration {Xm} of g-submodules of finite length such that
X =

⋃∞
m=0 Xm. Further, we say X is discretely decomposable in the category

Op if all Xm can be taken from Op.

Here are obvious examples:

Example 3.2. 1) Any g-module of finite length is discretely decomposable.
2) (completely reducible case). An algebraic direct sum of countably many
simple g-modules is discretely decomposable.

Remark 3.3. The concept of discretely decomposable g-modules was origi-
nally introduced in the context of (g, K)-modules in [8, Definition 1.1] as an
algebraic analogue of unitary representations whose irreducible decomposi-
tions have no ‘continuous spectrum’. Then the main issue of [7, 8] was to
find a criterion for the discrete decomposability of the restriction of (g, K)-
modules. We note that discrete decomposability in the generality of Defini-
tion 3.1 does not imply complete reducibility.

Suppose g′ is a reductive subalgebra, and p′ its parabolic subalgebra.

Lemma 3.4. Let X be a simple g-module. Then the restriction X|g′ is
discretely decomposable in the category Op′ if and only if there exists a g′-
module Y ∈ Op′ such that Homg′(Y,X|g′) 6= {0}. In this case, any subquotient
occurring in the g′-module X|g′ lies in Op′.
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Proof. Suppose Homg′(Y,X|g′) 6= 0 for some Y ∈ Op′ . Taking the sub-
quotient of Y if necessary, we may assume Y is a simple g′-module. Let
ι : Y → X be an injective g′-homomorphism. For m ∈ N, we denote by Ym

the image of the following g′-homomorphism:

g⊗ · · · ⊗ g︸ ︷︷ ︸
m

⊗Y → X, (H1 ⊗ · · · ⊗Hm)⊗ v 7→ H1 · · ·Hm ι(v).

Then X =
⋃∞

m=0 Ym because X is simple. Moreover Ym ∈ Op′ because
Op′ is closed under quotients and tensor products with finite dimensional
representations. Hence, the restriction X|g′ is discretely decomposable in
Op′ . Conversely, the ‘only if’ part is obvious because Op′ is closed under
submodules. Finally, any subquotient of Ym lies in Op′ , whence the last
statement. Thus Lemma 3.4 is proved.

3.2 Discretely decomposable restrictions for Op

Let G = Int(g), P the parabolic subgroup of G with Lie algebra p as before,
and G′ a reductive subgroup with Lie algebra g′. We ask when the restriction
X|g′ of X ∈ Op is discretely decomposable in the sense of Definition 3.1.

Proposition 3.5. If G′P is closed in G then the restriction X|g′ is discretely
decomposable for any simple g-module X in Op.

Proof. We set P ′ := G′ ∩ P . Suppose G′P is closed in G. Then G′/P ′ is
closed in the generalized flag variety G/P , and hence is compact. Therefore,
the Lie algebra p′ := g′ ∩ p of P ′ must be a parabolic subalgebra of g′.

Let X be a simple object in Op. Then X is obtained as the quotient of
some generalized Verma module, that is, there exists λ ∈ Λ+(l) such that the
composition map

Fλ ↪→ U(g)⊗U(p) Fλ � X

is non-trivial. Therefore, we get a non-zero g′-homomorphism

U(g′)⊗U(p′) (Fλ|p′) → X. (3.1)

Since the g′-module U(g′) ⊗U(p′) (Fλ|p′) lies in Op′ , the restriction X|g′ is
discretely decomposable in the category Op′ owing to Lemma 3.4.
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The converse statement of Proposition 3.5 will be proved in Theorem 4.1
under the assumption that (g, g′) is a semisimple symmetric pair.

The assumption of Proposition 3.5 fits well into the framework of Theorem
2.1. To see this, we make the following observation:

Lemma 3.6. Retain the notation as in Subsection 2.2. Then the following
conditions on the triple (g, g′, p) are equivalent:

(i) The G′-orbit through p ∈ P is closed.

(ii) G′P is closed in G.

Clearly these conditions are invariant under the conjugation of p by an el-
ement of the group NG(g′), and hence they are determined by the equivalence
claseses in NG(g′)\G/P ' G\(P×G′) (see (2.3)) containing (p, g′) ∈ P×G′.

3.3 g′-compatible parabolic subalgebra p

This subsection discusses a sufficient condition for the closedness of G′P in
G.

A semisimple element H ∈ g is said to be hyperbolic if the eigenvalues of
ad(H) are all real. For a hyperbolic element H, we define the subalgebras

u+ ≡ u+(H), l ≡ l(H), and u− ≡ u−(H)

as the sum of the eigenspaces with positive, zero, and negative eigenvalues,
respectively. Then

p(H) := l(H) + u+(H) (3.2)

is a Levi decomposition of a parabolic subalgera of g.
Let g′ be a reductive subalgebra of g, and p a parabolic subalgebra of g.

Definition 3.7. We say p is g′-compatible if there exists a hyperbolic element
H in g′ such that p = p(H).

If p = l + u+ is g′-compatible, then p′ := p ∩ g′ becomes a parabolic
subalgebra of g′ with Levi decomposition

p′ = l′ + u′+ := (l ∩ g′) + (u+ ∩ g′).

Then, using the notation of Subsection 3.2, we see that G′/P ′ = G′/G′ ∩ P
becomes a generalized flag variety, and therefore is closed in G/P . Hence,
we get the following proposition from Proposition 3.5:
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Proposition 3.8. If p is g′-compatible, then G′P is closed in G and the
restriction X|g′ is discretely decomposable for any X ∈ Op.

We note that the converse statement is not true (see also Theorem 4.1).

Example 3.9. Let g = g1 ⊕ g1, and g′ := diag(g1) ≡ {(Z,Z) : Z ∈ g1}.
Then a parabolic subalgebra p of g is g′-compatible if and only if p is of the
form p1 ⊕ p1 for some parabolic subalgebra p1 of g1.

On the other hand, G′P is closed in G = G1×G1 if and only if p is of the
form p1 ⊕ p2 for some parabolic subalgebras p1 and p2 containing a common
Borel subalgebra.

3.4 Character identities

In this subsection, we prove the character identities of the restriction of
generalized Verma modules to a reductive subalgebra g′ assuming that the
parabolic subalgebras p is g′-compatible.

Let p = l + u+ be a g′-compatible parabolic subalgebra of g defined by a
hyperbolic element H ∈ g′. We take a Cartan subalgebra j′ of g′ such that
H ∈ j′, and extend it to a Cartan subalgebra j of g. Clearly, j ⊂ l and j′ ⊂ l′.

We recall that Fλ denotes the finite dimensional, simple module of l with
highest weight λ ∈ Λ+(l). Likewise, let F ′

δ denote that of l′ for δ ∈ Λ+(l′).
Given a vector space V we denote by S(V ) =

⊕∞
k=0 Sk(V ) the symmetric

tensor algebra over V . We extend the adjoint action of l′ on u−/u− ∩ g′ to
S(u−/u− ∩ g′). We set

m(δ; λ) := dim Homl′(F
′
δ, Fλ|l′ ⊗ S(u−/u− ∩ g′)). (3.3)

Theorem 3.10. Suppose that p = l + u+ is a g′-compatible parabolic subal-
gebra of g, and λ ∈ Λ+(l).
1) m(δ; λ) < ∞ for all δ ∈ Λ+(l′).
2) In the Grothendieck group of Op′, we have the following isomorphism:

M g
p (λ)|g′ '

⊕
δ∈Λ+(l′)

m(δ; λ)M g′

p′ (δ). (3.4)

Proof. Let H ∈ g′ be the hyperbolic element defining the parabolic subalge-
bra p. We denote by g′′ the orthogonal complementary subspace of g′ in g
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with respect to the Killing form. Since ad(H) preserves the decomposition
g = g′ ⊕ g′′, the sum u− of negative eigenspaces of ad(H) decomposes as

u− = u′− ⊕ u′′− := (u− ∩ g′)⊕ (u− ∩ g′′). (3.5)

This is a decomposition of l′-modules, and hence, we have an l′-module iso-
morphism S(u′′−) ' S(u−/u− ∩ g′).
1) Let a(> 0) be the minimum of the eigenvalues of − ad(H) on u′′−. Since
H ∈ l′, we have

Homl′(F
′
δ, Fλ ⊗ Sk(u′′−)) = 0

for all k such that k > 1
a
(λ(H)−δ(H)). In view of (3.3), we get m(δ; λ) < ∞.

2) The formal character of the generalized Verma module M g
p (λ) is given by

ch(M g
p (λ)) = ch(Fλ)

∏
α∈∆(u−,j)

(1− eα)−1. (3.6)

Let us prove that its restriction to j′ equals the formal character of the right-
hand side of (3.4). For this, we observe that Fλ ⊗ S(u′′−) is a semisimple
l′-module, and therefore, it decomposes into the direct sum of simple l′-
modules

⊕
δ∈Λ+(l′) m(δ; λ)F ′

δ, where m(δ, λ) is defined in (3.3). Turning to
their formal characters, we get

ch(Fλ)|j′
∏

α∈∆(u′′−,j′)

(1− eα)−1 =
∑

δ∈Λ+(l′)

m(δ; λ) ch(F ′
δ). (3.7)

Writing the multiset ∆(u−, j)|j′ as a disjoint union ∆(u′′−, j′) q ∆(u′−, j′), we
get from (3.6) and (3.7)

ch(M g
p (λ))|j′ = ch(Fλ)|j′

∏
α∈∆(u′′−,j′)

(1− eα)−1
∏

α∈∆(u′−,j′)

(1− eα)−1

=
∑

δ

m(δ; λ) ch(F ′
δ)

∏
α∈∆(u′−,j′)

(1− eα)−1

=
∑

δ

m(δ; λ) ch(M g′

p′ (δ)).

Hence (3.4) holds in the Grothendieck group of Op′ .
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3.5 Multiplicity-free restriction

Retain the setting of the previous subsection. In particular, we suppose
that p = l + u+ is a g′-compatible parabolic subalgebra of g. We will see
in this subsection that the character identity in Theorem 3.10 leads us to
multiplicity-free branching laws for generalized Verma modules when the l′-
module S(u−/u− ∩ g′) is multiplicity-free.

Definition 3.11. We say that a g-module V is a multiplicity-free space if
the induced g-module on the symmetric algebra S(V ) is a multiplicity-free
representation.

Multiplicity-free spaces for reductive Lie algebras were classified by V.
Kac in the irreducible case, and by Benson–Ratcliff and Leahy independently
in the reducible case (see [1]).

The following Corollary is an immediate consequence of Theorem 3.10:

Corollary 3.12. Assume that u−/u−∩g′ is an l′-multiplicity-free space. We
denote by D the support of simple l′-modules occurring in S(u−/u− ∩ g′),
namely, S(u−/u− ∩ g′) '

⊕
δ∈D F ′

δ. Then any generalized Verma module
M g

p (λ) of scalar type decomposes into a multiplicity-free sum of generalized
Verma modules for g′ in the Grothendieck group of Op′ as follows:

M g
p (λ)|g′ '

⊕
δ∈D

M g′

p′ (λ|j′ + δ). (3.8)

Remark 3.13. For a ‘generic’ λ, the formula (3.8) becomes a multiplicity-free
direct sum of simple g′-modules. For instance, there is no extension among
the modules M g′

p′ (λ|j′ + δ) (δ ∈ D) if they have distinct Z(g′)-infinitesimal
characters (e.g. Theorems 5.5, 5.6 and 5.7) or if M g

p (λ) has an invariant Her-
mitian inner product with respect to a certain real form of g′ (e.g. Theorem
5.1). See Section 5 for details.

4 Branching problems for symmetric pairs

The decomposition of the tensor product of two representations is an example
of branching laws with respect to a special case of symmetric pairs, namely,
the pair g1 ⊕ g1 ↓ diag(g1). In this section, we discuss Problems A to D for
semisimple symmetric pairs.
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4.1 Criterion for discretely decomposable restriction

Let τ be an involutive automorphism of a semisimple Lie algebra g, and we
denote the fixed point subalgebra by

gτ := {Z ∈ g : τZ = Z}.

The pair (g, gτ ) is called a semisimple symmetric pair. Typical examples
are the pairs (g1 ⊕ g1, diag(g1)) (g1: semisimple Lie algebra), (sln, son), and
(slp+q, s(glp + glq)).

We lift τ to an automorphism of the group G = Int(g) of inner automor-
phisms, and set Gτ := {g ∈ G : τg = g}. Then Gτ is a reductive subgroup
of G with Lie algebra gτ .

Let p be a parabolic subalgebra of g, and X a g-module lying in Op.
Problem A asks when the restriction X|gτ contains simple gτ -modules. We
give its necessary and sufficient condition by the geometry of the generalized
flag variety G/P associated to the parabolic subalgebra p:

Theorem 4.1. Let g be a complex semisimple Lie algebra, τ an involutive
automorphism of g, and p a parabolic subalgebra. Then the following three
conditions on the triple (g, gτ , p) are equivalent:

(i) For any simple g-module X in Op, the restriction X|gτ contains at least
one simple gτ -module.

(ii) For any simple g-module X in Op, the restriction X|gτ is discretely
decomposable as a gτ -module in the sense of Definition 3.1.

(iii) GτP is closed in G.

If one of (hence all of ) the above three conditions is fulfilled then pτ := p∩gτ

is a parabolic subalgebra of gτ , and any irreducible subquotient occurring in
the restriction X|gτ belongs to the category Opτ

.

In Proposition 4.6, the geometric condition (iii) in Theorem 4.1 will be
reformalised as an algebraic condition.

Strategy of Proof of Theorem 4.1: We have already seen the equivalence
(i) ⇐⇒ (ii) in Lemma 3.4 and the implication (iii) =⇒ (ii) in Proposition 3.5
in a more general setting, i.e. without assuming that (g, g′) is a symmetric
pair. The non-trivial part is the implication (ii) =⇒ (iii), which will be
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proved in Subsection 4.4 after we establish some structual results on closed
Gτ -orbit in G/P (Subsection 4.2).

We end this subsection with two very special cases of Theorem 4.1,
namely, for p = b (Borel) and for the pair (g⊕ g, diag g):

Corollary 4.2. Let O be the BGG category associated to a Borel subalge-
bra b, and τ an involutive automorphism of g. Then the following three
conditions on (τ, b) are equivalent:

(i) Any simple g-module in O contains at least one simple gτ -module when
restricted to gτ .

(ii) Any simple g-module in O is discretely decomposable as a gτ -module in
the sense of Definition 3.1.

(iii) τb = b.

Proof. We shall see in Lemma 4.5 that GτB is closed in G if and only if
τb = b. Hence, Corollary follows from Theorem 4.1.

Corollary 4.3. Let p1, p2 be two parabolic subalgebras of a complex semisim-
ple Lie algebra g. Then the following three conditions on (p1, p2) are equiva-
lent:

(i) For any simple g-module X1 in Op1 and X2 in Op2, the tensor product
representation X1 ⊗X2 contains at least one simple g-module.

(ii) For any simple g-module X1 in Op1 and X2 in Op2, the tensor product
representation X1 ⊗X2 is discretely decomposable as a g-module.

(iii) p1 ∩ p2 is a parabolic subalgebra.

Proof. Let P1 and P2 be the parabolic subgroups of G = Int(g) with Lie
algebras p1 and p2, respectively. Then the diagonal G-orbit on (G×G)/(P1×
P2) through the origin is given as G/(P1 ∩ P2), which is closed if and only if
p1∩p2 is a parabolic algebra of g. Hence, Corollary is deduced from Theorem
4.1.
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4.2 Criterion for closed Gτ -orbit on G/P

As a preparation for the proof of Theorem 4.1, we establish some struc-
tural results for closed Gτ -orbits on the generalized flag variety G/P in this
subsection. We note that the closedness condition for Gτ -orbits on G/P is
much more complicated than that for the full flag variety G/B (cf. Lemma
4.5 below). The author is grateful to T. Matsuki for helpful discussions, in
particular, for the proof of Proposition 4.6.

Let g be a complex semisimple Lie algebra, G = Int(g), and τ an involu-
tive automorphism of g as before. We begin with:

Lemma 4.4.

1) Let θ be a Cartan involution of g commuting with τ . For any parabolic
subalgebra p, there exist h ∈ Gτ and a Cartan subalgebra j such that
τ j = θj = j and j ⊂ Ad(h)p. In particular, any parabolic subalgebra
contains a τ -stable Cartan subalgebra.

2) A parabolic subalgebra is τ -stable if and only if it is gτ -compatible (see
Definition 3.7).

Proof. 1) This assertion holds for any Borel subalgebra of g ([11, Theorem
1]). Hence, it holds also for any parabolic subalgebra.
2) Suppose p is a τ -stable parabolic subalgebra. Take a τ -stable Cartan
subalgebra j contained in p. Then there exists H ∈ j such that

p =
⊕

α∈∆(g,j)
α(H)≥0

gα.

Since τp = p, α(H) ≥ 0 if and only if α(τH) ≥ 0, which is then equivalent
to α(H + τH) ≥ 0. Therefore, the parabolic subalgebra p equals p(H + τH)
with the notation (3.2), and thus it is gτ -compatible. Conversely, any gτ -
compatible parabolic subalgebra is obviously τ -stable.

We then deduce a simple characterization of closed Gτ -orbits on the full
flag variety G/B from [11, Proposition 2] combined with Lemma 4.4 2):

Lemma 4.5. The following three conditions on τ and a Borel subalgebra b

are equivalent:

(i) GτB is closed in G.
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(ii) τb = b.

(iii) b is gτ -compatible.

Unfortunately, such a simple statement does not hold for a general parabolic
subalgebra p. In fact, the condition τp = p is stronger than the closedness
of GτP (see Example 3.9). In order to give the right characterization for the
closedness of GτP , we let prτ : g → gτ be the projection defined by

prτ (Z) :=
1

2
(Z + τZ). (4.1)

For a subspace V in g, we define the ±1 eigenspaces of τ by

V ±τ := {v ∈ V : τv = ±v}. (4.2)

Note that prτ (V ) = V τ if V is τ -stable.

Proposition 4.6. Suppose p is a parabolic subalgebra with nilradical u, and
τ is an involutive automorphism of g. Then, the following three conditions
on the triple (g, gτ , p) are equivalent:

(i) GτP is closed in G.

(ii) prτ (u) is a nilpotent Lie algebra.

(iii) prτ (u) consists of nilpotent elements.

We note that the parabolic subalgebra p may not be τ -stable in Proposi-
tion 4.6. The idea of the following proof goes back to [12], which is to use a
τ -stable Borel subalgebra contained in p when p itself is not τ -stable.

Proof. We take a Borel subalgebra b ⊂ p such that GτB is relatively closed
in GτP . This is possible because Gτ\G/B is a finite set.

(i) =⇒ (ii) Suppose GτP is closed in G. Then GτB is also closed in G.
Owing to Lemma 4.5, b is τ -stable, and therefore, so is the nilradical n of b.
Thus, prτ (n) = nτ . Since u ⊂ n, we get prτ (u) ⊂ prτ (n) = nτ .

For X, Y ∈ g, a simple computation shows

2[prτ (X), prτ (Y )] = prτ ([X, Y ]) + prτ ([X, τY ]).

If X, Y ∈ u, then [X, Y ] ∈ u and [X, τY ] ∈ [u, n] ⊂ u. Hence prτ (u) is a
Lie subalgebra. Since prτ (u) is contained in nτ , we conclude that prτ (u) is a
nilpotent Lie algebra. Thus, (i) =⇒ (ii) is proved.
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(ii) =⇒ (iii). Obvious.
(iii) =⇒ (i). Since the conditions (i) and (iii) remain the same if we replace

p by Ad(h)(p) for some h ∈ Gτ , we may and do assume that p contains a
Cartan subalgebra j such that τ j = θj = j by Lemma 4.4. Then θα = −α for
any α ∈ ∆(g, j).

Suppose GτP is not closed in G. By the Matsuki duality [11], we see
that GτθP is not open in G. Therefore, there exists α ∈ ∆(u, j) such that
g−α 6⊂ gτθ + p. Take a non-zero X−α ∈ g−α. In view that

X−α = (X−α + τθX−α)− τθX−α ∈ gτθ + gτα,

we see gτα 6⊂ p because otherwise X−α would be contained in gτθ +p. Hence,
g−τα ⊂ u and τα 6= α.

Take a non-zero Xα ∈ gα and we set X := Xα + τθXα ∈ gα + g−τα ⊂ u.

Case 1. Suppose X 6= 0. Let Y := prτ (X). Clearly, θY = Y . Moreover,
Y 6= 0 because τα 6= α. This means that prτ (u) contains a non-zero
semisimple element.

Case 2. Suppose X = 0. Let Y := Xα + τXα = Xα − θXα. Then Y 6= 0
and θY = −Y . Again, this means that prτ (u) contains a non-zero
semisimple element.

Thus we have proved the contraposition, “not (i) =⇒ not (iii)”. Hence
the proof of Proposition has been completed.

The nilradical of the Lie algbra pτ is given explicitly as follows:

Proposition 4.7. Under the equivalent conditions (i)-(iii) in Proposition
4.6, pτ is a parabolic subalgebra of gτ having the following Levi decomposition:

pτ = lτ + prτ (u).

Proof of Proposition 4.7. We take a Borel subalgebra b ⊂ p such that GτB
is closed, and a τ -stable Cartan subalgebra j contained in b as in the proof
of Proposition 4.6.

Given a j-stable subspace V =
⊕

α∈∆(V ) gα in g, we denote by ∆(V ) the

multiset of j-weights. (Here we note that the multiplicity of the zero weight
in V may be larger than one.) We divide ∆(V ) into the disjoint union

∆(V ) = ∆(V )I q∆(V )II q∆(V )III,
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subject to the condition (I) τα = α and τ |gα = id, (II) τα = α and τ |gα =
− id, and (III) τα 6= α. Accordingly, we have a direct sum as vector spaces:

V τ =
⊕

α∈∆(V )I

gα ⊕
⊕

α,τα∈∆(V )III

(gα + gτα)τ ,

prτ (V ) =
⊕

α∈∆(V )I

gα ⊕
⊕

α∈∆(V )III

(gα + gτα)τ .

In particular, we get

pτ =
⊕

α∈∆(p)I

gα ⊕
⊕

α,τα∈∆(p)III

(gα + gτα)τ

=
⊕

α∈∆(l)I

gα ⊕
⊕

α,τα∈∆(l)III

(gα + gτα)τ ⊕
⊕

α∈∆(u)I

gα ⊕
⊕

α,τα∈∆(u)III

(gα + gτα)τ

=lτ ⊕ prτ (u).

Here we have used τu ⊂ p in the second equality. Thus Proposition 4.7 is
proved.

4.3 Application of associated varieties to restrictions

In this subsection, we apply associated varieties of g-models to the study of
branching problems.

Suppose X is a finitely generated g-module. We take a finite dimensional
subspace X0 which generates X as a g-module. Let U(g) = ∪k≥0Uk(g) be
a natural filtration of the enveloping algebra of g. Then, Xk := Uk(g)X0

(k ∈ N) gives a filtration {Xk}k satisfying

X =
∞⋃

k=0

Xk, Ui(g)Xj = Xi+j (i, j ≥ 0).

Then, gr X :=
⊕∞

k=0 Xk/Xk−1 is a finitely generated module of the commu-
tative algebra gr U(g) ' S(g). The associated variety of the g-module X is
a closed subset Vg(X) of g∗ defined by

Vg(X) := SuppS(g)(gr X).

Then Vg(X) is independent of the choice of the generating subspace X0. We
recall the following basic properties:

17



Lemma 4.8 ([6, Chapter 17]). 1) If 0 −→ X1 −→ X −→ X2 −→ 0 is an
exact sequence of g-modules, we have Vg(X) = Vg(X1) ∪ Vg(X2).
2) For any finite dimensional p-module F , Vg(U(g)⊗U(p) F ) = p⊥.

Let g′ be a reductive subalgebra of g, and prg→g′ : g∗ → g′∗ the restriction
map. We set p′ := g′ ∩ p and p′⊥ := {λ ∈ (g′)∗ : λ|p′ ≡ 0}.

Lemma 4.9. Let X be a simple g-module lying in Op.
1) If Y is a simple g′-module such that Homg′(Y,X|g′) 6= {0} then

prg→g′(Vg(X)) ⊂ Vg′(Y ) ⊂ (p′)⊥. (4.3)

2) If Yi are simple g′-modules such that Homg′(Yi, X|g′) 6= {0} (i = 1, 2),
then Vg′(Y1) = Vg′(Y2).

Proof. 1) Since Op is closed under tensor products with finite dimensional
representations, the proof for the first inclusion in (4.3) parallels to the proof
of [8, Theorem 3.1] by using the double filtration of X.

For the second inclusion in (4.3), we use the notation of the proof of
Proposition 3.5 and let Y be the image of (3.1). Then it follows from Lemma
4.8 that Vg′(Y ) ⊂ Vg′(U(g′)⊗U(p′) (Fλ|p′)) = p′⊥.
2) The proof is the same as that of [8, Theorem 3.7] in the category of
(g, K)-modules.

Remark 4.10. An analogous result to Lemma 4.9 2) was proved in [4] in the
special case where X is the oscillator representation of g = sp(n, R) in the
context of compact dual pair correspondence. In this case, prg→g′(Vg(X)) co-
incides with the associated variety Vg′(Y ). It is plausible that prg→g′(Vg(X)) =
Vg′(Y ) in the generality of the setting in Lemma 4.9. We shall prove this as-
sertion in Theorem 4.11 below for symmetric pairs (g, gτ ).

4.4 Proof of Theorem 4.1

The equivalence of Theorem 4.1 has been already proved in Section 4.1 except
for the implication (ii) ⇒ (iii). We are ready to complete the proof.

Proof of Theorem 4.1, (ii) ⇒ (iii). By the Killing form, we identify g∗ with
g. Then the projection prg→gτ : g∗ → (gτ )∗ is given as the map prτ : g → gτ

(see (4.1)). Further, p⊥ = {λ ∈ g∗ : λ|p ≡ 0} is isomorphic to the nilpotent
radical u of the parabolic subalgebra p.
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We take a generalized Verma module X := M g
p (λ) with generic parameter

λ ∈ Λ+(l) (cf. (2.2)). Then it follows from Lemma 4.8 that Vg(X) = u.
Therefore, if the restriction X|gτ is discretely decomposable, then prτ (u)
consists of nilpotent elements by Lemma 4.9. In turn, GτP is closed in G
owing to Proposition 4.6. Thus, the proof of Theorem 4.1 is completed.

4.5 Associated varieties of irreducible summands

We retain the previous notation: p is a parabolic subalgebra of a complex
semisimple Lie algebra g, and τ an involutive automorphism of g. In this
subsection, we give an explicit formula for the associated variety Vgτ (Y ) and
the Gelfand–Kirillov dimension DIM(Y ) of irreducible summands Y .

Theorem 4.11. Suppose (g, gτ , p) satisfies one of (hence, all of) the equiv-
alent conditions in Theorem 4.1. Let X = M g

p (λ) be a simple generalized
Verma module, and Y a simple g′-module such that Homg′(Y,X|g′) 6= {0}.
Then,

Vgτ (Y ) = prτ (u) and DIM(Y ) = dim gτ/pτ .

Proof of Theorem 4.11. The nilradical of the parabolic subalgebra pτ is given
by prτ (u) in Proposition 4.7. Hence, via the isomorphism g∗ ' g, the inclusive
relation (4.3) is written as

prτ (Vg(X)) ⊂ Vgτ (Y ) ⊂ prτ (u). (4.4)

Since Vg(X) = u, the three terms in (4.4) must be the same, and therefore
Vgτ (Y ) = prτ (u).

The Gelfand–Kirillov dimension DIM(Y ) is given by the dimension of the
associated variety Vgτ (Y ), and thus we have DIM(Y ) = dim prτ (u), which
equals dim pτ − dim lτ = dim gτ − dim pτ by Proposition 4.7.

Remark 4.12. There are finitely many Gτ -orbits on the generalized flag va-
riety G/P by [11]. Among them, suppose GτyjP (j = 1, 2, · · · , k) are closed
in G. Correspondingly we realize gτ as a subalgebra of g by

ιj : gτ ↪→ g, Z 7→ Ad(yj)
−1(Z).

Then (g, ιj(g
τ )) form symmetric pairs defined by the involutions τj := Ad(y−1

j )◦
τ ◦ Ad(yj) ∈ Aut(g). Theorem 4.1 implies that the restrictions X|ιj(gτ ) are
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discretely decomposable for any X ∈ Op and for any j (j = 1, . . . , k). Obvi-
ously, the Lie algebras ιj(g

τ ) are isomorphic to each other, but dim(p∩ιj(g
τ ))

may differ. Accordingly, the Gelfand–Kirillov dimension of simple summands
in the restrictions X|ιj(gτ ) depends on j. See Examples 4.13 and 4.14 below.

Example 4.13 (Ap+q−1 ↓ Ap−1 × Aq−1). Let p, q ≥ 2, g = slp+q(C), p its
parabolic subalgebra whose nilradical is the Heisenberg Lie algebra of dimen-
sion 2(p + q)− 3, and g′ = s(glp(C)⊕ glq(C)). Then, there are four injective
homomorphisms ιj : g′ → g (1 ≤ j ≤ 4) such that each ιj induces closed
G′-orbits on G/P . Let τj ∈ Aut(g) be defined as in Remark 4.12. It turns
out that p is τj-compatible for all j. Further, the Gelfand–Kirillov dimension
is given by

DIM(Y ) =


p + q − 2 (j = 1, 2)

2p− 3 (j = 3)

2q − 3 (j = 4)

for any simple g′-module Y and for any simple generalized Verma module
X = M g

p (λ) such that Homg′(Y,X|ιj(g′)) 6= 0.

Example 4.14 (Cn ↓ An). Let g = spn(C) (complex symplectic Lie algebra
of rank n), p the Siegel parabolic subalgebra, and g′ = gln(C). Then there are
(n + 1) injective homomorphisms ιj : g′ → g (0 ≤ j ≤ n) such that each ιj
induces closed GLn(C)-orbits on Sp(n, C)/P and that

DIM(Y ) = j(n− j)

for any simple g′-module if Y occurs in the restriction X|ιj(g′) where X is
any simple generalized Verma module M g

p (λ).

Sketch of the proof. We take ιj so that gR ' sp(n, R) and gR ∩ ιj(g
′) '

u(j, n− j) with the notation as will be explained in Subsection 5.1.

4.6 Finite multiplicity theorem

The multiplicities in branching laws behave much simpler in the category
O than those in the context of unitary representations (see Example 4.17
below).

Here is a finite multiplicity theorem in the category O.
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Theorem 4.15 (finite multiplicity theorem). Let τ be an involutive auto-
morphism of a complex semisimple Lie algebra g. Then

dim Homgτ (Y,X|gτ ) < ∞ (4.5)

for any simple g-module X in the category O and any simple gτ -module Y .

Proof of Theorem 4.15. Suppose Homgτ (Y,X|gτ ) 6= 0 for some X and Y .
Denote b by the Borel subalgebra that defines the category O. Then it
follows from Theorem 4.1 and Lemma 4.5 that b is gτ -compatible.

We now apply Theorem 3.10 to the gτ -compatible Borel subalgebra b,
and conclude that Homgτ (Y,M g

b (λ)) < ∞ for any Verma module M g
b (λ).

Since any simple g-module X ∈ O is obtained as the quotient of a Verma
module, (4.5) follows.

Remark 4.16. We recall that Theorem 3.10 counts the multiplicities in the
subquotients. Therefore, the multiplicities of Y occurring in the restriction
X|gτ as subquotients are also finite.

Theorem 4.15 should be compared with the fact that the multiplicities
are often infinite in the branching laws of the restriction of an irreducible
unitary representation with respect to a semisimple symmetric pair (see [9]):

Example 4.17. There exists an irreducible unitary representation π of G =
SO(5, C) and two irreducible unitary representations Y1 and Y2 of the sub-
group G′ = SO(3, 2) satisfying the following three conditions:

(1) 0 < dim HomG′(Y1, π|G′) < ∞.

(2) dim HomG′(Y2, π|G′) = ∞.

(3) DIM(Y1) = 3, DIM(Y2) = 4.

Here, HomG′(·, ·) denotes the space of continuous G′-intertwining operators,
and DIM(Y ) stands for the Gelfand–Kirillov dimension of the underlying
(g′, K ′)-module of the unitary representation Y of G′.

5 Multiplicity-free branching laws

In this section we prove two multiplicity-free theorems for the restriction of
generalized Verma modules with respect to symmetric pairs (g, g′):
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• p is special and (g, g′) is general (Theorem 5.1),

• p is general and (g, g′) is special (Theorem 5.4).

Correspondingly, explicit branching laws are also derived (Theorems 5.2, 5.5,
5.6, and 5.7).

5.1 Parabolic subalgebra with abelian nilradical

We begin with multiplicity-free branching laws of the restriction M g
p (λ)|gτ

with respect to symmetric pairs (g, gτ ) in the case where p is a certain max-
imal parabolic subalgebra.

An abstract feature of the results here boils down to the following:

Theorem 5.1. Suppose p = l + u+ is a parabolic subalgebra such that the
nilradical u+ is abelian. Then for any involutive automorphism τ such that
τp = p, the generalized Verma module M g

p (λ) of scalar type is decomposed
into a multiplicity-free direct sum of simple gτ -modules if λ ∈ Λ+(l) is suffi-
ciently negative, i.e. 〈λ, α〉 � 0 for all α ∈ ∆(u+).

Theorem 5.1 is deduced from an explicit formula of the irreducible de-
composition. To give its description, we write g = u− + l + u+ for the
Gelfand–Naimark decomposition, and take a Cartan subalgebra j of l such
that lτ contains jτ as a maximal abelian subspace (see (4.2) for notation).
Let ∆(u−τ

− , jτ ) be the set of weights of u−τ
− with respect to jτ . The roots

α and β are said to be strongly orthogonal if neither α + β nor α − β is a
root. We take a maximal set of strongly orthogonal roots {ν1, · · · , νk} in
∆(u−τ

− , jτ ) inductively as follows: νj is the highest root among the elements
in ∆(u−τ

− , jτ ) that are strongly orthogonal to ν1, · · · , νj−1 (1 ≤ j ≤ k − 1).
The cardinality k coincides with the split rank of the semisimple symmetric
space GR/Gτ

R.
Then we have

Theorem 5.2. Suppose that p and τ are as in Theorem 5.1. Then, for any
sufficiently negative λ, the generalized Verma module M g

p (λ) decomposes into
a multiplicity-free direct sum of generalized Verma modules of gτ :

M g
p (λ)|gτ '

⊕
a1≥···≥al≥0
a1,··· ,al∈N

M gτ

pτ (λ|jτ +
l∑

j=1

ajνj). (5.1)
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Proof of Theorem 5.2. Suppose that p is a parabolic subalgebra such that
its nilradical u+ is abelian. Then p is automatically a maximal parabolic
subalgebra. Further, it follows from [13] that there exists a real form gR of
g such that GR/(GR ∩ P ) is a Hermitian symmetric space of non-compact
type, where GR is the connected real form of G = Int(g) with Lie algebra gR.
The group KR := GR ∩ P is a maximal compact subgroup of GR, and the
complexification of its Lie algebra gives a Levi part, denoted by l, of p.

Let θ be the involution of g defined by

θ|l = id, θ|u−+u+ = − id .

Then, θ stabilizes gR and p, and the restriction θ|gR is a Cartan involution
of the real semisimple Lie algebra gR. Since θ commutes with τ , τθ defines
another involution of g. We use the same symbol to denote its lift to the
group G. Then Kτθ

R = Gτθ
R ∩ P is a maximal compact subgroup of Gτθ

R ,
and has a complexified Lie algebra lτ . Further, Gτθ

R /(Gτθ
R ∩ P ) = Gτθ

R /Kτθ
R

becomes also a Hermitian symmetric space whose holomorphic tangent space
at the origin is identified with u−τ

− . It then follows from W. Schmid [14] that
the symmetric algebra S(u−τ

− ) decomposes into the multiplicity-free sum of
simple lτ -modules as

S(u−τ
− ) '

⊕
δ∈D

F ′
δ,

where δ is the highest weight of F ′
δ and

D := {
k∑

j=1

ajνj : a1 ≥ · · · ≥ ak ≥ 0, a1, . . . , ak ∈ N}.

Applying Corollary 3.12, we see that the identity (5.1) holds in the
Grothendieck group of gτ -modules. Finally, let us show that the restric-
tion M g

p (λ)|gτ decomposes as a direct sum of gτ -modules as given in (5.1) if
λ is sufficiently negative.

For this, let G̃R be the universal covering group of GR, and K̃R that
of KR. Then the generalized Verma module M g

p (λ) is isomorphic to the

underlying (g, K̃R)-module of a highest weight representation of G̃R which is
unitarizable if 〈λ, α〉 � 0 for any α ∈ ∆(u+). Hence, the identity (5.1) in
the Grothendieck group holds as gτ -modules.
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Remark 5.3. As we have seen in the above proof, Theorems 5.1 and 5.2 are
equivalent to the theorems on branching laws of unitary highest weight rep-
resentations of a real semisimple Lie group G̃R. In the latter formulation,
the corresponding results were previously proved in [9, Theorem B] by a geo-
metric method based on reproducing kernels and ‘visible actions’ on complex
manifolds. See also [9, Theorem 5.3].

5.2 Multiplicity-free pairs

Next, we consider multiplicity-free branching laws of the restriction M g
p (λ)

in the case where p = b (Borel subalgebra). In general, the ‘smaller’ the
parabolic subalgebra p is, the ‘larger’ the generalized Verma module M g

p (λ)
becomes. Hence, we expect that the multiplicity-free property of the restric-
tion M g

b (λ)|gτ in the extreme case p = b should give the strongest constraints
on the pair (g, gτ ). In this subsection, we determine for which symmetric pair
(g, gτ ) the restriction M g

b (λ)|gτ is still multiplicity-free.
Before stating a theorem, we recall from Corollary 4.2 that any simple

g-module in O contains at least one simple gτ -module if and only if GτB is
closed in G, or equivalently, b is τ -stable.

Theorem 5.4. Let g be a complex simple Lie algebra, and (g, gτ ) a complex
symmetric pair. Then the following three conditions are equivalent:

(i) (g, gτ ) is isomorphic to (sln+1(C), gln(C)) or (son+1(C), son(C)).

(ii) For any τ -stable Borel subalgebra b, the restriction M g
b (λ)|gτ is multiplicity-

free as gτ -modules for any generic λ.

(iii) The restriction M g
b (λ)|gτ is multiplicity-free as gτ -modules for some λ

and some τ -stable Borel subalgebra b.

Proof of Theorem 5.4. (i) =⇒ (ii). We shall give an explicit branching law
of the restriction M g

b (λ) with respect to the symmetric (g, gτ ) which is iso-
morphic to (sln+1(C), gln(C)) or (son+1(C), son(C)) in Subsections 5.3–5.5.

(ii) =⇒ (iii). Obvious.
(iii) =⇒ (i). We take a τ -stable Levi decomposition b = j + n. Then, it

follows from Theorem 3.10 that M g
b (λ)|gτ is multiplicity-free only if S(n−τ ) is

multiplicity-free as a jτ -module. In turn, this happens only if the weights of
n−τ are linearly independent over Q, which leads us to the following inequality

dim n−τ ≤ dim jτ ,
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or equivalently,
dim g− dim gτ ≤ rank g + rank gτ . (5.2)

In view of the classification of complex symmetric pairs (g, gτ ) with g simple,
the inequality (5.2) holds only if (g, gτ ) is isomorphic to (sln+1(C), gln(C))
or (son+1(C), son(C)).

In Subsections 5.3–5.5, we shall fix a Borel subalgebra b of g and consider
B-conjugacy classes of involutions τ instead of considering Gτ -conjugacy
classes of Borel subalgebras by fixing τ . With this convention, we shall
use the abbreviation M g(λ) for M g

b (λ).

5.3 Branching laws for gln+1 ↓ gln

Let g := gln+1(C) and g′ := gl1(C)⊕gln(C). We observe that there are (n+1)
closed GLn(C)-orbits on the full flag variety of GLn+1(C). Correspondingly,
there are essentially n + 1 different settings for discretely decomposable re-
strictions of the Verma module M g(λ) to g′ by Theorems 2.1 and 4.1.

In order to fix notation, let b = j + n+ be the standard Borel subalgebra
of consisting of upper triangular matrices in g, and j the Cartan subalgebra
consisting of diagonal matrices. For 1 ≤ l ≤ n + 1, we realize g′ as a
subalgebra of g by letting ιl(g

′) be the centralizer of the matrix unit Ell. For

k = (k1, · · · , k̂l, · · · , kn+1) ∈ Nn, we set

indl k := k1 + · · ·+ kl−1 − kl+1 − · · · − kn+1.

In what follows, � denotes the outer tensor product representation of the
direct product of Lie algebras.

Theorem 5.5 (An ↓ An−1). Suppose λi − λj /∈ Z for any distinct i, j in

{1, · · · , l̂, · · · , n+1}. Then the restriction of the Verma module of g decom-
poses into a multiplicity-free direct sum of simple Verma modules of g′.

M gln+1(λ)|ιl(gl1⊕gln)

'
⊕
k∈Nn

Cλl+indl k�M gln(λ1−k1, · · · , λl−1−kl−1, λl+1+kl+1, · · · , λn+1+kn+1).

(5.3)
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Proof. We fix l (1 ≤ l ≤ n + 1) once and for all. Let τ ≡ τl be the involution
of g such that gτ = ιl(g

′). With our choice of j, we have jτ = j ' Cn+1, and
the set of characters of jτ is identified with Cn+1. We apply Corollary 3.12
to the jτ -module n−τ

− :

n−τ
− =

l−1⊕
i=1

g−ei+el
⊕

n+1⊕
i=l+1

g−el+ej
.

Extending this to the symmetric algebra S(n−τ
− ), we have jτ -isomorphism:

S(n−τ
− ) '

⊕
k∈Nn

(−k1, . . . ,−kl−1, indl k, kl+1, · · · , kn+1).

Therefore, the identity (5.3) holds in the Grothendieck group by Corollary
3.12.

Since λi − λj 6∈ Z for any i, j, the Verma modules appearing in the right-
hand side of (5.3) have distinct infinitesimal characters. Therefore, there
is no extension among these representations. Hence (5.3) is a direct sum
decomposition.

5.4 Branching laws for so(2n + 1) ↓ so(2n)

Let g = so2n+1(C), g′ = so2n(C) and G′ be the connected subgroup of G =
Int(g) with Lie algebra g′. Then there are two closed G′-orbits on the full
flag variety G/B, which are conjugate to each other by an element of the
normalizer NG(g′). Thus it follows from Theorem 2.1 that there is essentially
the unique triple (g, g′, b) satisfying the equivalent conditions of Theorem 4.1.

To fix notation, we may and do assume that g′ ∩ b contains a Cartan
subalgebra j of g and that

∆+(g, j) ={ei ± ej : 1 ≤ i < j ≤ n} ∪ {ei : 1 ≤ i ≤ n},
∆+(g′, j) ={ei ± ej : 1 ≤ i < j ≤ n}.

Theorem 5.6 (Bn ↓ Dn). Suppose λi ± λj /∈ Z for any 1 ≤ i < j ≤ n.

M so2n+1(λ)|so2n =
⊕
k∈Nn

M so2n(λ− k). (5.4)
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Proof of Theorem 5.6. Let τ be the involution of g such that g′ = gτ . Ap-
plying Corollary 3.12 to the j-module:

S(n−τ
− ) = S(

n⊕
i=1

g−ei
) '

⊕
k∈Nn

(−k1, · · · ,−kn),

we get (5.4) in the Grothendieck group. The assumption λi±λj 6∈ Z assures
that every summand in (5.4) is simple. Further, there is no extension among
M so2n(λ− k) because they have a distinct Z(g′)-infinitesimal characters.

5.5 Branching laws for so(2n + 2) ↓ so(2n + 1)

Let g = so2n+2(C) and g′ = so2n+1(C). Then there exists a unique closed
G′-orbit on the full flag variety G/B. To fix notation, we suppose that our
Borel subalgebra b = j + n is defined by the positive system

∆+(g, j) = {ei ± ej : 1 ≤ i < j ≤ n + 1},

and that j′ := j ∩ g′ is given by {H ∈ j : en+1(H) = 0}. Then b′ := b ∩ g′ is a
Borel subalgebra of g′ given by a positive system

∆+(g′, j′) = {ei ± ej : 1 ≤ i < j ≤ n} ∪ {ei : 1 ≤ i ≤ n}.

Theorem 5.7 (Dn+1 ↓ Bn). Suppose λi ± λj 6∈ Z for any 1 ≤ i < j ≤ n.
We set λ := (λ1, · · · , λn). Then

M so2n+2(λ, λn+1)|so2n+1 '
⊕
k∈Nn

M so2n+1(λ− k). (5.5)

Proof. Let τ be the defining involution of g′ = so2n+1(C). Then

n−τ
− =

n⊕
i=1

(g−ei+en+1 + g−ei−en+1)
−τ ,

and hence we have an isomorphism

S(n−τ
− ) '

⊕
k∈Nn

(−k1, · · · ,−kn)

as j′-modules. Therefore, (5.5) follows from Corollary 3.12.
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