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1 Introduction

Just as in physical string theory, topological string amplitudes were originally defined
genus by genus from a worldsheet formulation. Much progress has been made in the
meantime in understanding these theories from a target space point of view, which of-
ten provides better computability than the worldsheet approach. Unlike the worldsheet
description, the target space approach should in principle provide a non-perturbative def-
inition of the theory. The object which is conventionally referred to as the topological
string partition function is indeed a partition function for this target space theory, i.e. the
path integral of the action over target space fields. On a target space with boundary, the
path integral yields a functional on the boundary values of the fields. In the Hamiltonian
formalism, we must choose a polarization on field space, and only specify half of the fields
on the boundary. The functional thus defined is a wave function, and transforms as a
wave function must under a change of polarization. Though no target space path integral
enters into the definition of the worldsheet partition function, it must exhibit this wave
function behavior if a dual target space description indeed exists.

Following the treatment in [1], we study below how the choice of polarization manifests
itself in the open topological string partition function, in the example of the resolved
conifold. We find that the proper choice of canonical variables depends on such data as
brane placement, the distinction between branes and antibranes, and the choice of Kähler
cone. Having mapped different partition functions to choices of polarization, we have
a prediction for the behavior of the partition function under canonical transformations.
Performing the integral transforms explicitly matches these predictions, but only up to
coefficients and argument shifts. We interpret these mismatches as indicative of non-
perturbative effects that are missed by the worldsheet treatment.

2 The A-model perspective

2.1 The geometry

We consider the A-model on the resolved conifold O(−1) ⊕ O(−1) → P1. It can be
obtained via a symplectic quotient construction with moment map

|X1|
2 + |X2|

2 − |X3|
2 − |X4|

2 = t . (1)

The zero set of this equation in C4 is depicted in Fig. 1. The geometry is toric, with the
obvious (C∗)3 action. Regarded as a toric fibration, one, two, three 1-cycles respectively
of the fiber degenerate on each face, edge, corner of the base. In the following, we will
sometimes depict this geometry simply by indicating the edges and corners (or vertices)
along which the fiber degenerates. We will refer to this locus as the toric skeleton.
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Figure 1: Conifold as T 3 fibration over manifold with corners.

2.2 A-branes

A-branes wrap Lagrangian submanifolds and carry a flat connection. A distinguished
class of Lagrangian submanifolds in toric varieties can be obtained as T 2 fibrations over
lines in the geometry of Fig. 1 (linear in the coordinates |Xi|

2) ending on the toric
skeleton [2]. The slope of the lines must be correlated with the embedding of the T 2

fiber of the Lagrangian into the T 3 fiber of the ambient geometry in order to satisfy
the Lagrangian condition (with regard to the symplectic form inherited from C

4, ω =
∑

i d|Xi|
2 ∧ dθi). These Lagrangians have the topology R2 × S1: of the two S1 fibers at

infinity, one degenerates on the toric skeleton.

The moduli space of branes wrapping these distinguished special Lagrangian submani-
folds is locally a cylinder: it is given by the position along an edge, encoded in the area e−r

of a holomorphic disc ending on the brane, together with a phase given by the Wilson loop
of the brane gauge field around the S1, specifying the flat bundle over the Lagrangian,

x = e−r tr P exp

∮

A . (2)

tr here specifies the trace in the fundamental representation - for the Abelian bundles
that we will be considering, the trace and path ordering are of course trivial.

At a vertex, the entire fiber shrinks to zero, and we hence cannot naively follow the
brane through the vertex from one edge to another. From the classical A-model point of
view, the complete moduli space hence appears disconnected, consisting of a copy of a
cylinder per edge [3]. However, as common in the A-model, we should expect corrections
to this description quantum mechanically. Indeed, as we review below, a B-model analysis
shows that in the quantum corrected moduli space, the cylinders are in fact joined together
smoothly to form a 4-punctured sphere [4].

To completely specify the open A-model on non-compact geometries, an additional
integer must be specified for each non-compact brane in the geometry. This integer was
referred to as a framing choice in [5], as this is what it corresponds to in the target space
description of the open topological string given by Chern-Simons theory.
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2.3 The target space description

In [6], Witten provides a target space description of the open topological string in the
A-model as a Chern-Simons theory living on the Lagrangian submanifold wrapped by
the brane, modified by instanton corrections,. Given a Lagrangian with boundary, the
partition function of this target space theory should behave as a wave function on the
phase space given by the field configurations restricted to the boundary. We interpret
the non-compact Lagrangians introduced in the previous subsection as solid tori with
a boundary T 2 at infinity. The phase space of conventional Chern-Simons theory on a
solid torus is given by the holonomy of the gauge field around its two cycles [7]. In a
Hamiltonian framework, only one of these two variables is fixed as a boundary condition
when evaluating the path integral of the target space action. By standard arguments in
quantum mechanics, different choices of cycle yield partition functions which are related
by canonical transformations, as has been explicitly worked out in [7].

Witten’s target space proposal for the open topological A-model differs from conven-
tional Chern-Simons theory in two regards: the presence of instanton corrections, and the
complexification of the fields, as in Eq. (2), to encode moduli of the Lagrangian subman-
ifolds in addition to the connection on the brane. While the instanton corrections take
place away from the boundary and hence do not enter in determining the phase space of
the theory, the complexification of the fields leads to a complexification of phase space
which will play a central role in the analysis below.

3 The B-model perspective

3.1 The geometry

In the Hori-Vafa prescription, the superpotential of the mirror Landau-Ginzburg theory
to the A-model on the conifold is given by

W =
n

∑

i=1

e−Yi ,

with Re Yi = |Xi|
2, and the linear constraint

Y1 + Y2 − Y3 − Y4 = t (3)

among the Yi reflecting the toric data [8]. As far as holomorphic data is concerned, we
can instead consider the B-model on the geometry

n
∑

i=1

e−Yi = UV ,

with e−Yi homogeneous coordinates on CP3 and U and V sections of an appropriate line
bundle over this projective space [9]. Upon solving Eq. (3) and restricting to an affine
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patch, the geometry is governed by an equation of the form

H(w, y) = uv , (4)

with H(w, y) a polynomial in e±w, e±y.

3.2 B-branes

B-branes, at the level of precision required here, wrap holomorphic submanifolds and
carry holomorphic vector bundles.

The mirrors to the Lagrangian branes ending on the toric skeleton discussed in section
2 wrap holomorphic curves given by [2]

uv = 0 ,

H(w0, y0) = 0 . (5)

The moduli space of these branes is coordinatized locally by the coordinates w0, y0, which
are constrained to lie on the Riemann surface determined by H . In terms of homogeneous
coordinates on CP3, this Riemann surface is given by the equation

e−Y1 + e−Y2 + e−Y3 + e−Y4 = 0 , (6)

and Eq. (3), homogeneous in the coordinates yi = e−Yi . These equations describe a
sphere. As the physical variables describing the B-model are the cylinder variable Yi, the
correct moduli space requires puncturing the sphere in the following four points:

P1 : (1 : 0 : −1 : 0) , P2 : (1 : 0 : 0 : −1) , P3 : (0 : 1 : 0 : −1) , P4 : (0 : 1 : −1 : 0) .

At each of these, the real part of two of the coordinates Yi is going off to infinity. In the
Yi coordinates, this 4-punctured sphere naturally appears as 4 cylinders which are joined
smoothly. We easily identify these cylinders as the external edges of the toric diagram
describing the resolved conifold. As promised, the moduli space of branes that arises in
the B-model setup hence appears to connect the disconnected moduli space that arose in
the A-model picture.

3.3 The target space theory

The action of holomorphic Chern-Simons theory, the proposed target space theory of the
open topological B-model, is given by

∫

Ω ∧ Tr (A ∧ ∂A +
2

3
A ∧ A ∧ A) , (7)

where A is a holomorphic connection [6]. The appropriate description of non-compact
B-branes is conjectured to be given by the dimensional reduction of this action onto
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the worldvolume of the brane [2]. Restricting to an affine patch and an infinitesimal
neighborhood of the curve C yields the reduced action

∫

C

dudū

u
w∂uy , (8)

with u the coordinate along the brane worldvolume C. The punchline of this analysis is
that w and y are conjugate coordinates from the point of view of the brane target space
action. The appropriate symplectic form on this patch of phase space is therefore

ω = ±dw ∧ dy . (9)

Note that we are proposing a 2 complex dimensional phase space with a (2, 0) form as
holomorphic symplectic form, and our wave functions are to depend holomorphically on
one complex variable. This is a reflection of the complexification of the open string
modulus on the A-model side pointed out in subsection 2.3.

The equation H(w, y) = 0 has not entered into our analysis up to this point. We will
interpret this equation, following [10], as a constraint to be imposed on the topological
string partition function after quantization. More precisely, upon a choice of canonical
variables (p(w, y), x(w, y)), we obtain a differential operator from H(w, y) (up to normal
ordering ambiguities to which we return below) by rewriting it in terms of p, x, mapping
p 7→ gs∂x and interpreting x as a multiplication operator. We then require this operator
to annihilate the partition function. [10] motivates this procedure by considering the
Landau-Ginzburg description of the B-model with superpotential W = H(w, y), and
imagining dynamically turning off W . Imposing Eq. (3), but not Eq. (6) on CP3 yields a
2 complex dimensional space M̃ , which we interpret, upon puncturing, as the holomorphic
phase space M of our system.

In the homogeneous coordinates of CP
3, M̃ is given by

y1y2 = y3y4e
−t . (10)

Consider first the point t = 0 in complex structure moduli space. By setting

y1 = ab , y2 = cd , y3 = ad , y4 = bc , (11)

we can identify this space with CP
1 × CP

1, coordinatized as (a : c) × (b : d). We
obtain M by removing the points where any of the coordinates a, b, c, d vanish, obtaining
C∗×C∗. While one may at this point be tempted to forget about M̃ and introduce affine
coordinates on M , we will see that the description in terms of {a, b, c, d}, corresponding
each to one of the four punctures of the sphere, is best suited for assigning polarizations
to punctures. The proposal for a holomorphic symplectic form on M consistent with Eq.
(9) is now

ω = ± d log
a

c
∧ d log

b

d
= ±dξ ∧ dη , (12)
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where

ξ = log
y1

y4
= log

y3

y2
,

η = log
y1

y3
= log

y4

y2
. (13)

For arbitrary t, this discussion goes through after a rescaling of the identification of yi

and a, b, c, d, eg. by retaining Eqs. (11) up to

y2 = e−tcd . (14)

This does not effect the choice of symplectic form, but introduces a shift of the canonical
variables by ±t in certain instances, as we will develop below.

4 The partition function as wave function

4.1 Choice of polarization and the worldsheet

We have now laid the necessary ground work to tackle the question we raised in the intro-
duction: identifying the dependence of the partition function on the choice of polarization
of phase space, which arises naturally in the target space description of the theory, from
the worldsheet point of view. We begin by considering the A-model. It is natural to iden-
tify the dependence of the partition function on the modulus defined in Eq. (2) with the
boundary condition dependence in the target space description, reviewed in section 2.3.
Indeed, both descriptions require the choice of a cycle of the torus fiber of the Lagrangian.
However, the relevant torus for the target space description sits at infinity, whereas the
relevant torus for the worldsheet is situated at the center of the solid torus and is hence
degenerate. The two tori are sketched in figure 2.

Figure 2: The boundary torus at infinity vs. the degenerate torus on which the worldsheet
ends.

The only natural choice for defining the worldsheet modulus is a non-contractible cycle
of the solid torus. It hence would appear that some polarizations are not accessible from
the worldsheet description of the theory. However, based on the B-model description of
the setup, we developed an understanding of the moduli space of branes as a 4-punctured
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sphere, i.e. four joined cylinders, in the previous section [2]. We can therefore deter-
mine the open topological string partition function for a brane close to a given puncture,
corresponding to a Lagrangian ending on the corresponding edge, and consider following
the partition function as we move along moduli space to a different puncture, i.e. to
a different edge of the toric diagram from the A-model point of view. This procedure
therefore allows us to obtain the open topological string partition function expressed in
the unnatural coordinate corresponding to the complexified Wilson loop around a con-
tractible cycle (since the functional form of the partition function does not change as we
move between punctures, one can somewhat glibly say that different brane placements in
the open topological string partition function are related via changes of polarization of
phase space) [11].

Complementing brane placement by choice of framing and Kähler cone, we will find
in the remainder of this section that we can uniquely map the choice of polarization to
the worldsheet theory.2

4.2 The partition functions

The open string partition function in the presence of a single brane wrapping a Lagrangian
submanifold of the form discussed in subsection 2.2 takes the form

Z(x) =
∑

R

ZRe−|R|x , (15)

with ZR the partition function as calculated in the topological vertex formalism of [12].
A representation R is assigned to the appropriate edge of the toric diagram. The sum
ranges over all Young tableaux consisting of a single row (including the empty tableau),
|R| corresponds to the number of boxes in the tableaux, and the open string modulus x
is as defined in Eq. (2). The partition function for an antibrane (in the sense of [13]) is

Z(x) =
∑

R

(−1)|R|ZRte−|R|x . (16)

For the conifold, we label the external edges of the toric diagram from 1 to 4 as in Fig.
3. The partition functions are then given by [1]

Z1,3(k)(x) =

∞
∑

r=0

∏r
i=1(1 − Qq1−i)

[r]!
q

1
4
(r−1)r(1−2k)(−1)rke−rx ,

Z2,4(k)(x) =

∞
∑

r=0

(−1)r

∏r
i=1(1 − Qqi−1)

[r]!
q−

1
4
(r−1)r(1+2k)(−1)rke−rx . (17)

The superscript on Z indicates the edge on which the brane is ending, Q = e−t labels
the exponential of the Kähler class, and [r] = (qr/2 − q−r/2), [r]! =

∏r
i=1[r]. The framing
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1

2

3
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Figure 3: Conifold with fiducial framing.

integer k is defined relative to the framing depicted in Fig. 3.

For the fiducial framing, the partition functions have a representation as infinite prod-
ucts

Z1,3(x) =

∞
∏

i=0

1 − qi+ 1
2 e−x

1 − Qqi+ 1
2 e−x

(18)

= exp[

∞
∑

n=1

e−nx

n[n]
(1 − Qn)] ,

Z2,4(x) =
1

Z1,3(x)
. (19)

The partition functions for anti-branes, which we denote as Z∗, are given by

Z∗1,3(k) = Z2,4(−k) , (20)

Z∗2,4(k) = Z1,3(−k) . (21)

4.3 The assignment of canonical variables

Our goal is now to assign a choice of polarization of phase space to each external edge of
the toric skeleton of the A-model geometry (hence each puncture of the B-model Riemann
surface) that is natural from the point of view of the worldsheet. ‘Natural’ here means that
the canonical coordinate of this choice must map to a viable modulus from the worldsheet
perspective, with its phase corresponding to a Wilson loop around a non-contractible S1.
As reviewed in subsection 2.2, a choice of cycle of the solid torus which constitutes the
worldvolume of the brane corresponds to a choice of (a product of) the four coordinates
Xi specifying the A-model geometry. Two of these do not vanish anywhere along the
worldvolume of the brane, their phases hence yield viable S1’s. These two coordinates are
uniquely characterized by the property that they go to infinity along the edge on which

2To be precise, while the framing must be specified in determining the open partition function on
non-compact manifolds and hence a worldsheet manifestation must exist, it has not been identified to
date (but see [14]).
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the brane terminates, hence map to B-model variables yi that vanish at the corresponding
puncture. This is the criterion which determines the choice of canonical coordinate [10].

Based on this discussion and the choice of symplectic form in Eq. (12), we arrive at the
following procedure for assigning polarization in terms of the homogeneous coordinates
a, b, c, d on M̃ introduced in Eqs. (12). At each puncture, exactly one of these coordinates
vanishes. The canonical coordinate is chosen appropriately; eg. at P1, c = 0, hence
x = −ξ. The canonical momentum is then chosen in accordance with the symplectic form
(12). At P1, with the choice of sign ω = dξ ∧ dη, p = η + nξ (such that ω = dp ∧ dx).

This simple picture must be refined due to the fact that the physical coordinates of
the problem are the Yi, not the a, b, c, d. As a consequence, the canonical coordinate at
eg. P1 is either log y4

y1
or log y2

y3
. The choice is between the two variables that vanish at

the puncture, in this case y2 and y4. In terms of the conifold geometry, this is roughly
speaking a choice between (I) a base coordinate on P1 or (II) a fiber (the two line bundles
over P1) coordinate. The distinction in terms of ξ is a shift by t. For the canonical
momentum, there is a natural choice: the quotient of the two variables yi that do not
vanish at the puncture.

In table 1, we list the polarization assignments to each puncture following the above
discussion, for n = 0 and ω = +dξ ∧ dη.

P1 P2 P3 P4

p1 x1 p2 x2 p3 x3 p4 x4

η −ξ −ξ −η −(η − t) ξ − t ξ − t η − t
p x x −p t − p −t − x −t − x −t + p

Table 1: Canonical variables for the conifold, with the canonical coordinate chosen along
the fiber (II).

We have arrived at a prescription for attributing a set of polarizations of phase space to
each puncture of the B-model Riemann surface. As we will develop in the next subsection,
it turns out that each of the remaining choices,

• the shift by ±t alluded to above,

• the choice of sign of the symplectic form,

• the choice of n in p → p + nx,

has an interpretation from the point of view of the worldsheet.

4.4 The constraint equation

We address the choices that remain in the puncture/polarization assignment with the help
of the constraint equation (6): each choice of polarization maps the constraint to a different
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differential operator. Each partition function presented in subsection 4.2 incorporates
certain data (brane placement, brane vs. antibrane, etc.). By determining which partition
function is annihilated by which operator, we can map this data to a choice of polarization.

Expressed in terms of the canonical variables of table 1, the constraint equation takes
the following forms,

P1,3 : 1 + e−x + ep + e−x+p−t = 0

P2,4 : 1 + e−x + e−p + e−x−p−t = 0 . (22)

As the partition functions at P1, P3 and P2, P4 respectively coincide, it is a first test on
the consistency of our setup that we obtain the same equations at the respective pairs.
We find that the partition functions Z1,2,3,4 are indeed annihilated by an appropriate
constraint operator, once we take the following two points into account.

• Mapping an algebraic to a differential operator entails normal ordering ambiguities.
In our case, due to [p, x] = gs, they arise as powers of q. We adjust these as
appropriate.

• We have not been careful in keeping track of the imaginary parts of the variables
Yi. The correct constraint equations arise upon acting by x, p 7→ x + iπ, p + iπ on
Eqs. (22).

We arrive at

(1 − ep − q−1/2e−x + q−1/2e−xQep)Z1,3 = 0 ,

(1 − e−p − q1/2e−x + q1/2e−xQe−p)Z2,4 = 0 . (23)

Phase space orientation: Had we chosen the opposite sign of the symplectic form
in equation (9), we would have identified the negative of the expressions listed in table
1 as canonical momenta. That p 7→ −p distinguishes between branes and antibranes
is immediate upon inspection of the two equations (22): they are exchanged by p 7→
−p, consistent with Z1,3 = Z2,4∗. We hence observe that the choice between brane and
antibrane is determined by the orientation of phase space.

Choice of Kähler cone: The canonical coordinates corresponding to choice (I) and
(II) introduced in the previous subsection are related by

(p, x)II = (p, x − t)I . (24)

Under this substitution, the two constraints (23) are essentially swapped, with Q̃ = et

replacing Q = e−t. We conclude that the choice of (I) vs. (II) in polarization corresponds
to a choice of Kähler cone from the point of view of the worldsheet. By Z1,3∗ = Z2,4, the
role of branes and antibranes are reversed with this choice.
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Framing: We can also understand the canonical transformation T k, which adds multi-
ples of p to x, x 7→ x − kp. Under this transformation, the constraint operator eg. for
Z1,3 becomes

1 − ep − (−1)kq−1/2e−xekp + (−1)kq−1/2e−xQe(k+1)p . (25)

With the choice of normal ordering displayed, it annihilates the partition function Z1,3(k).
The case Z2,4 works analogously. The correspondence between the integer ambiguity
arising by adding multiples of p to x and the framing ambiguity was already developed
in [2] in a related discussion.

4.5 Transformation of the partition function

We begin by studying how the operators T and S are represented on the Hilbert space
of which the open string partition function is to be a wave function. Throughout this
subsection, we are forced to be cavalier about pre-factors and shifts of x by t and gs.
We will have some comments in this regard in the following subsection, but a better
understanding of the failure of the transformations studied here to yield exact results is
still lacking.

Working out the kernel for the integral transform that implements a change of polar-
ization on a wave function is a canonical exercise, yielding

KA(x′, x) = e
1

2gsc
(dx2−2xx′+ax′2) (26)

for the SL(2, Z) element

A =

(

a b
c d

)

. (27)

The subtlety that arises in our setup is that the canonical variables are complex, the
symplectic form is hence of type (2,0). This invalidates the canonical treatment for which
the canonical variables are assumed to be self-adjoint. We pursue here a hybrid strategy:
we use the integration kernels obtained from the canonical approach, but give ourselves
leeway in the choice of integration contour [10].

Whenever the symplectic transformation has d 6= 0, we interpret the integral as a
Gaussian with the contour chosen to ensure convergence, and evaluate

∫

KA(x′, x)e−rx → e(a− 1
d
) x′2

2gsc
− rx′

d
− gscr2

2d . (28)

The T transformation: The kernel that follows for the transformation T k is

KT k(x′, x) = e
1

2gsk
(x2−2xx′+x′2) .
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The result of the integration term by term is
∫

dxKT k(x′, x)e−rx ∼ q−k r2

2 e−rx′

. (29)

Upon shifting x by appropriate multiples of gs and πi, we thus find that the integral kernel
KT k implements framing shifts as expected,

Z(k)(x′) =

∫

dxKT k(x′, x)Z(x −
k

2
gs + kπi) . (30)

The S transformation: The integration kernel KS is given by

KS(x′, x) = e
1

gs
xx′

.

This results in a Fourier transform. We can no longer apply the integral transform term by
term to the partition function in series form. We can however evaluate the transformation
when the partition function is presented as an infinite product, i.e. for the particular choice
of framing that yields Z1,2,3,4 in the form given in Eq. (18). Here, we will choose a contour
in the complex x plane so that we pick up all residues at x = −t + gs(i + 1

2
), i ≥ 0 and

x = gs(i + 1
2
), i ≥ 0, respectively. We then obtain

∮

Z1,3
t (x)ex′x/gs =

∮ ∞
∏

i=0

1 − qi+ 1
2 e−x

1 − Qqi+ 1
2 e−x

ex′x/gs

→ (1 − Q−1)
∞
∏

i=1

1 − Q−1qi

1 − qi

∞
∑

n=0

n
∏

i=1

1 − Qqi

1 − qi
e(n+ 1

2
)x′

Qx′/gs−n

=

∞
∏

i=0

1 − Q−1qi

1 − qi+1
e

gs−2t

2gs
x′

Z1,3∗
t−gs

(−x′ − t +
1

2
gs) (31)

and
∮

Z2,4
t (x)ex′x/gs =

∮ ∞
∏

i=0

1 − Qqi+ 1
2 e−x

1 − qi+ 1
2 e−x

ex′x/gs

→ (1 − Q)
∞
∏

i=1

1 − Qqi

1 − qi

∞
∑

n=0

n
∏

i=1

1 − Qq−i

1 − q−i
e(n+ 1

2
)x′

=

∞
∏

i=0

1 − Qqi

1 − qi+1
e

1
2
x′

Z2,4∗
t+gs

(−x′ −
1

2
gs) . (32)

Note that gs shifts of closed string Kähler parameters have already made several appear-
ances in studies of the open topological A-model, starting with [15]. Ignoring pre-factors
and shifts, we interpret these equations schematically as

Z1,3(x)
S
−→ Z1∗,3∗(−x − t) ,

Z2,4(x)
S
−→ Z2∗,4∗(−x) . (33)
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The integral kernel for the transformation S2 = −1 cannot be read off of Eq. (26), as
c = 0. It is not hard however to convince oneself that the correct kernel here is simply

KS2(x′, x) = δ(x + x′) . (34)

We now check whether these results are consistent with the canonical coordinates
determined at each puncture. The SL(2, Z) matrices Aij mapping (pj, xj) into (pi, xi)
can be read off from table 1. The transformation matrix from P2 to P1 is given by

A12 =

(

0 −1
1 0

)

= −S ,

and the transformation between P1 and P3, P2 and P4 respectively is affine linear, i.e.
Aij(pj, xj)

T + aij = (pi, xi)
T , with

A13 = A24 =

(

−1 0
0 −1

)

= S2 , a13 =

(

t
−t

)

, a24 =

(

−t
−t

)

.

−S

S2◦+ (t,−t)T

Figure 4: Canonical transformations relating different brane placements on the conifold.

Transformation from P1 to P3 and from P2 to P4: This is given by S2 = −1 and
shifts by t. Our transformation rules hence imply that the partition functions at the points
of the two pairs should be related, respectively, by replacing the argument x 7→ −x − t.
From our calculations above, the partition functions within each pair are equal. To check
whether these two results are compatible, we must therefore relate the partition function
at x to the one at −x. To this end, note that at the points P2 and P4, the partition
functions can be expressed as,

Z2,4(x) =
Z(x)

Z(x + t)
, (35)

with

Z(x) = exp[−

∞
∑

n=1

e−nx

n[n]
] . (36)
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Z(x) is in fact the open topological string partition function for the vertex geometry with
one brane insertion [10]. Upon continuation away from real gs, Z(x) satisfies the following
identity

Z∗(−x) = Z(x)
q1/24

η(τ)

∞
∑

n=−∞

(−1)nqn2/2e−nx , (37)

with q = e2πiτ and x = −2πiζ (which is essentially the Jacobi triple product identity).
We will take this as an indication for the relation

Z∗(−x) ∼ Z(x) (38)

up to a normalization factor. Upon performing a modular transformation (again assuming
continuation away from real gs), this factor has an expansion in e−1/gs, suggesting that
we interpret it as an indication for non-perturbative terms we are missing in the partition
function. We will comment on this further in the next subsection. Assuming (38), we
obtain

Z2,4(−x − t) =
Z(−x − t)

Z(−x)

∼
Z(x)

Z(x + t)
= Z2,4(x) . (39)

Likewise for Z1,3,

Z1,3(−x − t) ∼ Z1,3(x) .

Transformation from P2 to P1 and P4 to P3: This is given by −S. It acts as

Z2,4(x)
S
−→ Z2∗,4∗(−x) = Z1,3(−x)

S2

−→ Z1,3(x) .

With the same caveats as above, the transformation kernel relating Z2,4 to Z1,3 hence
follows correctly from the canonical variables assigned to P1,3 and P2,4. The inverse
transformation from P1,3 to P2,4 is given by (−S)−1 = S. Here,

Z1,3(x)
S
−→ Z1∗,3∗(−x − t) = Z2,4(−x − t) ∼ Z2,4(x) .

4.6 Non-perturbative terms: a preliminary study

In this final subsection, we offer some comments on the normalization factors that arise
throughout the previous subsection.

In our study so far, we have followed the literature in assuming3

〈eix|e
H

r
A|Z〉

〈eix|Z〉
= eirx . (40)

3In this subsection, we use conventions such that x → x+2π is the periodicity of the exponential; the
substitution x 7→ ix reinstates the conventions used in the rest of the paper. We will also express our
results in terms of the Chern-Simons coupling k, rather than gs. The two are related via gs = − 2πi

k
.
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On general grounds, normalized expectation values of Wilson loops in Chern-Simons the-
ory on solid tori are known to yield characters of the relevant affine Lie algebra, in our
case uk. What has been neglected in (40) is to mod out by large gauge transformations
(see [16], which argues for this approach). If we instead take these into account, Eq. (40)
is modified to

Zr(x) = exp[irx]
∑

m∈Z

exp[ikmx] , (41)

which is indeed a uk character.[7]

How does this modification effect our considerations? We consider here the trans-
formation of the partition function Z∗(x) on C3, which was introduced in the previous
subsection. The canonical transformation which maps different brane insertions amongst
themselves is −TS in this case [10]. It acts as

Z∗(x)
−TS
−−→ Z(−x) . (42)

Recall that by

Z∗(x)Z∗(−x) ∼
ϑ(x, 1/k)

η(1/k)
, (43)

we argued for Z(−x) ∼ Z∗(x).

The wave function for the antibrane with the modification (41), which we denote by
Z̃∗, is given by

Z̃∗(x) =
∞

∑

r=0

1

[r]!
q

1
4
(r−1)reirx

∑

m∈Z

eikmx . (44)

Evaluating the Gaussian integral associated to the canonical transformation −TS for
the modified wavefunction term by term yields

∫

dxK−TS(x′, x)eix(r+km) = e
x′2

2gs
−i(r+km)x′+ gs(ir+ikm)2

2 (45)

= e−
kx′2

4πi e−i(r+km)x′

q−
r2

2 eπim2k , (46)

hence formally,

Z̃∗(x) 7→−TS Z(−x − π) e−
kx2

4πi ϑ(−
kx

2π
, k)

=
√

i/kZ(−x − π)ϑ(
x

2π
,−1/k)

=
√

i/k η(−1/k)q−1/24 Z∗(x) . (47)

We see that the modification (41) yields precisely the ϑ function needed to relate Z(−x)
to Z∗(x). Two main points remain to be understood:
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• The coefficient in (47), as well as the fact that we obtain Z∗(x), and not Z̃∗(x),
are possibly due to our considering a too naive measure in performing canonical
transformations (see [7] for a discussion of the measure factor in the non-abelian
context).

• Our considerations regarding theta functions are formal as real k corresponds to real
modular parameter τ , and this is a degenerate limit in which theta functions are
ill-defined. This is yet another reflection of the fact that a complex variant of the
conventional Chern-Simons theory is needed to capture the open topological string.
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