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Abstract. We show that the Witt class of a weakly group-theoretical
non-degenerate braided fusion category belongs to the subgroup gen-
erated by classes of non-degenerate pointed braided fusion categories
and Ising braided categories. This applies in particular to solvable non-
degenerate braided fusion categories. We also give some sufficient con-
ditions for a braided fusion category to be weakly group-theoretical or
solvable in terms of the factorization of its Frobenius-Perron dimension
and the Frobenius-Perron dimensions of its simple objects. As an ap-
plication, we prove that every non-degenerate braided fusion category
whose Frobenius-Perron dimension is a natural number less than 1800,
or an odd natural number less than 33075, is weakly group-theoretical.

1. Introduction

A fusion category C is called weakly group-theoretical if it is categori-
cally Morita equivalent to a nilpotent fusion category, that is, if there exists
an indecomposable module category M such that C∗

M is a nilpotent fusion
category. In particular, every weakly group-theoretical fusion category has
integer Frobenius-Perron dimension. If, furthermore, C is Morita equivalent
to a cyclically nilpotent fusion category, then C is called solvable. Equiva-
lently, C is solvable if there exist sequences Vec = C0, . . . , Cn = C, of fusion
categories, and G1, . . . , Gn, of cyclic groups of prime order such that for all
1 ≤ i ≤ n, Ci is a Gi-equivariantization or a Gi-extension of Ci−1. We refer
the reader to [11] for other characterizations and main properties of weakly
group-theoretical and related fusion categories.

An important class of fusion categories is that of braided fusion categories,
that is, fusion categories C endowed with natural isomorphisms c : X⊗Y →
Y ⊗ X, X,Y ∈ C, called a braiding, subject to appropriate axioms. Two
extreme classes of braided fusion categories, so-called symmetric and non-
degenerate braided fusion categories, appear related to the square of the
braiding.
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Symmetric fusion categories have been classified by Deligne [7]. On the
other side, a number of important results concerning the structure of a non-
degenerate braided fusion category have been established in the literature.
A non-degenerate braided fusion category endowed with a compatible rib-
bon structure is called a modular category. Modular categories have many
applications in distinct areas of mathematics and mathematical physics, for
instance, in low-dimensional topology, they constitute an important tool in
the construction of invariants of knots and 3-manifolds. See e.g. [1, 22].

The group of Witt classes of non-degenerate braided fusion categories,
denoted W, was introduced in [4]. Two non-degenerate braided fusion cat-
egories C1 and C2 are called Witt equivalent if there exist fusion categories
D1 and D2 such that C1�Z(D1) ∼= C2�Z(D2) as braided tensor categories,
where Z(Di) denotes the Drinfeld center of the fusion category Di, i = 1, 2.

The Witt group W consists of equivalence classes of non-degenerate brai-
ded fusion categories under this equivalence relation with multiplication in-
duced by Deligne’s tensor product �. The unit element is the class of the
category Vec of finite-dimensional vector spaces over the base field k and
the inverse of the class of a non-degenerate braided fusion category C is the
class of the reverse braided fusion category Crev. This endows W with the
structure of an (infinite countable) abelian group.

The explicit determination of the structure of the group W and the re-
lations amongst its elements are pointed out in [4] as relevant problems in
connection with the classification of fusion categories.

Let Wpt and WIsing denote, respectively, the subgroup of Witt classes
of pointed non-degenerate fusion categories and the subgroup generated by
Witt classes of Ising braided categories.

Recall that an Ising braided category is a non-pointed braided fusion cat-
egory of Frobenius-Perron dimension 4. Ising braided categories were classi-
fied in [9, Appendix B]; it is known that they fall into 8 equivalence classes
and all of them are non-degenerate. If I is an Ising braided category, then
the pointed subcategory Ipt is the unique nontrivial (symmetric) subcate-
gory of I, and it is equivalent to the category sVec of super-vector spaces.
Besides, I has a unique non-invertible simple object of Frobenius-Perron
dimension

√
2.

The subgroups Wpt and WIsing are explicitly described in [9, Appendix
A.7 and Appendix B]; see also [4, Sections 5.3 and 6.4 (3)]. We have that
WIsing is isomorphic to the cyclic group of order 16. On the other hand, if
Wpt(p) denotes the group of classes of metric p-groups, we have an isomor-
phism Wpt

∼=
⊕

p prime Wpt(p). In addition, Wpt(2) ' Z8⊕Z2, Wpt(p) ' Z4,

if p = 3(mod 4), and Wpt(p) ' Z2 ⊕ Z2, if p = 1(mod 4).

In this paper we show that if C is a non-degenerate braided fusion category
such that C is weakly group-theoretical, then the Witt class [C] of C belongs
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to the subgroup generated by Wpt and WIsing. If, moreover, C is integral,
then [C] ∈ Wpt. See Theorem 6.2.

The proof of Theorem 6.2 is given in Section 6. It relies on results of
the paper [4]. It makes use as well of the notion of a braided group-crossed
fusion category introduced in [23, 24] and its main properties, in particular,
its connection with the existence of nontrivial Tannakian subcategories in
a braided fusion category. These results are recalled in Sections 3 and 4.
Using these tools, we also prove in Section 5 a related result (Theorem 5.3)
on the structure of solvable braided fusion categories.

Let W̃ be the subgroup of W generated by Witt equivalence classes of
the fusion categories C(g, l) of integrable highest weight modules of level
l ∈ Z+ over the affinization of a simple finite-dimensional Lie algebra g.

It is shown in [4] that Wpt,WIsing ⊆ W̃. Conjecturally, W̃ coincides with
the subgroup Wun of Witt classes of pseudo-unitary non-degenerate braided
fusion categories [4, Question 6.4].

On the other side, it is also conjectured that every fusion category of
integer Frobenius-Perron dimension is weakly group-theoretical [11, Ques-
tion 2]. As a consequence of Theorem 6.2, we obtain that for every non-
degenerate braided fusion category C such that C is weakly group-theoretical,

then [C] ∈ W̃.

One of the main results of [11] establishes the analogue of Burnside’s
paqb-theorem for fusion categories, namely, that any fusion category C whose
Frobenius-Perron dimension is paqb, where p and q are prime numbers and
a, b are non-negative integers, is solvable. Some solvability results for braided
fusion categories have been obtained in [19, 20]. In particular, if C is a
braided fusion category such that the Frobenius-Perron dimensions of sim-
ple objects of C are ≤ 2, or if FPdim C is odd and the Frobenius-Perron
dimensions of simple objects of C are powers of a fixed prime number, then
C is solvable.

Combining the main properties of braided group-crossed fusion categories
with the methods developed in the paper [11], we also give in Section 7 some
further sufficient conditions for a braided fusion category to be solvable or
weakly group-theoretical. We show that every weakly integral braided fusion
category whose Frobenius-Perron dimensions of simple objects are powers
of a fixed prime number is always solvable. See Theorem 7.2. This extends
the previously mentioned results in [19, 20].

In addition, we show that every non-degenerate braided fusion category C
whose Frobenius-Perron dimension factorizes in the form FPdim C = paqbc,
where p and q are prime numbers, a, b ≥ 0, and c is a square-free natural
number, is necessarily weakly group-theoretical. See Theorem 7.4.

In Section 8 we apply this result to show in Theorems 8.1 and 8.2, respec-
tively, that every weakly integral non-degenerate braided fusion category of
Frobenius-Perron dimension less than 1800 is weakly group-theoretical and
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moreover, it is solvable if its Frobenius-Perron dimension is odd and less
than 33075.

Acknowledgement. This paper was written during a visit to the Institute
des Hautes Études Scientifiques, France. The author is grateful to the IHES
for the outstanding hospitality and the excellent atmosphere.

2. Preliminaries and notation

We shall work over an algebraically closed field k of characteristic zero.
The category of finite dimensional vector spaces over k will be denoted by
Vec. A fusion category over k is a semisimple rigid monoidal category over k
with finitely many isomorphism classes of simple objects, finite-dimensional
Hom spaces, and such that the unit object 1 is simple. We refer the reader
to [10, 11, 9] for the main notions about fusion categories and braided fusion
categories used throughout. Unless otherwise stated, all tensor categories
will be assumed to be strict.

2.1. Frobenius-Perron dimensions. Let C be a fusion category. The
Frobenius-Perron dimension of a simple object X ∈ C is, by definition,
the Frobenius-Perron eigenvalue of the matrix of left multiplication by the
class of X in the basis Irr(C) of the Grothendieck ring of C consisting of
isomorphism classes of simple objects. The Frobenius-Perron dimension of
C is the number FPdim C =

∑
X∈Irr(C)(FPdimX)2. The category C is called

integral if FPdimX ∈ Z, for all simple object X ∈ C, and it is called weakly
integral if FPdim C ∈ Z.

If C is a weakly integral fusion category, then (FPdimX)2 ∈ Z, for all
simple object X ∈ C [10, Proposition 8.27]. This implies, in particular, that
a fusion subcategory of C is also weakly integral. On the other hand, if C
is weakly integral (respectively, integral) and F : C → D is a dominant (or
surjective) tensor functor, then D is weakly integral (respectively, integral)
as well; see [10, Corollary 8.36], [2, Proposition 2.12].

2.2. Nilpotent and weakly group-theoretical fusion categories. Let
G be a finite group. A G-grading on a fusion category C is a decomposition
C = ⊕g∈GCg, such that Cg ⊗ Ch ⊆ Cgh and C∗

g ⊆ Cg−1 , for all g, h ∈ G. The
fusion category C is called a G-extension of a fusion category D if there is a
faithful grading C = ⊕g∈GCg with neutral component Ce ∼= D.

If C is any fusion category, there exist a finite group U(C), called the
universal grading group of C, and a canonical faithful grading C = ⊕g∈U(C)Cg,
with neutral component Ce = Cad, where Cad is the adjoint subcategory of
C, that is, the fusion subcategory generated by X ⊗X∗, X ∈ Irr(C).

A fusion category C is (cyclically) nilpotent if there exists a sequence of
fusion categories Vec = C0 ⊆ C1 · · · ⊆ Cn = C, and finite (cyclic) groups
G1, . . . , Gn, such that for all i = 1, . . . , n, Ci is a Gi-extension of Ci−1.
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Dual to the notion of a group extension, we have the notion of an equivari-
antization. Consider an action of a finite group G on a fusion category C by
tensor autoequivalences ρ : G → Aut⊗ C. The equivariantization of C with

respect to the action ρ, denoted CG, is a fusion category whose objects are
pairs (X,µ), such that X is an object of C and µ = (µg)g∈G, is a collection
of isomorphisms µg : ρgX → X, g ∈ G, satisfying appropriate compatibility
conditions.

The forgetful functor F : CG → C, F (X,µ) = X, is a dominant ten-
sor functor that gives rise to a central exact sequence of fusion categories
RepG → CG → C [2], where RepG is the category of finite-dimensional
representations of G.

Two fusion categories C and D are Morita equivalent if D is equivalent to
the dual C∗

M with respect to an indecomposable module category M.
A fusion category C is called weakly group-theoretical (respectively, solv-

able) if it is Morita equivalent to a nilpotent (respectively, cyclically nilpo-
tent) fusion category.

It is shown in [11, Proposition 4.1] that the class of weakly group-theoreti-
cal fusion categories is stable under the operations of taking extensions,
equivariantizations, Morita equivalent categories, tensor products, Drinfeld
center, fusion subcategories and components of quotient categories. Also,
the class of solvable fusion categories is stable under taking extensions and
equivariantizations by solvable groups, Morita equivalent categories, tensor
products, Drinfeld center, fusion subcategories and components of quotient
categories.

2.3. Braided fusion categories. A braiding in a fusion category C is a
natural isomorphism cX,Y : X ⊗ Y → Y ⊗ X, X,Y ∈ C, subject to the
hexagon axioms. A braided fusion category is a fusion category endowed
with a braiding.

Suppose C is a braided fusion category. The reverse braided fusion cat-
egory will be denote by Crev; thus, if cX,Y : X ⊗ Y → Y ⊗ X denotes the

braiding of C, then Crev = C as a fusion category, with braiding crevX,Y = c−1
Y,X ,

for all objects X,Y .

If D is a fusion subcategory of a braided fusion category C, the Müger
centralizer of D in C will be denoted by Z2(D, C), or also by D′ when there
is no ambiguity. Thus Z2(D, C) is the full fusion subcategory generated by
all objects X ∈ C such that cY,XcX,Y = idX⊗Y , for all objects Y ∈ D.

The Müger (or symmetric) center of C will be denoted by Z2(C) :=
Z2(C, C). The category C is called symmetric if Z2(C) = C. If C is any
braided fusion category, its Müger center Z2(C) is a symmetric fusion sub-
category of C. On the opposite extreme, C is called non-degenerate (respec-
tively, slightly degenerate) if Z2(C) ∼= Vec (respectively, if Z2(C) ∼= sVec).



6 SONIA NATALE

For a fusion category C, the Drinfeld center of C will be denoted Z(C). It is
known that Z(C) is a braided non-degenerate fusion category of Frobenius-
Perron dimension FPdimZ(C) = (FPdim C)2. Necessary and sufficient con-
ditions for a braided fusion category to be equivalent to the center of some
fusion category are given in [4].

Let G be a finite group. The fusion category of finite dimensional rep-
resentations of G will be denoted by RepG. This is a symmetric fusion
category with respect to the canonical braiding. A braided fusion category
E is called Tannakian, if E ∼= RepG for some finite group G as symmetric
fusion categories.

A Theorem of Deligne [7], states that every symmetric fusion category L
is super-Tannakian, meaning that there exist a finite group G and a central
element u ∈ G of order 2, such that L is equivalent to the category Rep(G, u)
of representations of G on finite-dimensional super-vector spaces where u
acts as the parity operator.

Hence if L ∼= Rep(G, u) is a symmetric fusion category, then E = RepG/u
is a Tannakian subcategory of L and FPdim E = FPdimL/2; in particular,
if FPdimL > 2, then L necessarily contains a Tannakian subcategory, and a
non-Tannakian symmetric fusion category of Frobenius-Perron dimension 2
is equivalent to the category sVec of finite-dimensional super-vector spaces.
See [11, Section 2.4].

3. Connected étale algebras in braided fusion categories

Let C be a braided fusion category. Recall from [4] that a separable
commutative algebra A ∈ C is called an étale algebra in C. If HomC(1, A) ∼=
k, then A is called connected.

Let A ∈ C be a connected étale algebra. Let also CA denote the category
of right A-modules in C and C0

A the category of dyslectic A-modules. If C
is a non-degenerate braided fusion category, then there is an equivalence of
braided fusion categories

(3.1) C � (C0
A)

rev ∼= Z(CA),

such that the restriction of the forgetful functor U : Z(CA) → CA to C ∼=
C � Vec is isomorphic to the free module functor FA : C → CA, FA(X) =
X ⊗ A. See [4, Corollary 3.30 and Remark 3.31 (i)]. It follows from
this that C0

A is a non-degenerate braided fusion category and FPdim C0
A =

FPdim C/(FPdimA)2. Moreover, (C0
A)

rev ' Z2(C,Z(CA)) as braided fusion
categories.

Proposition 3.1. Let C be a non-degenerate braided fusion category. Sup-
pose that A ∈ C is a connected étale algebra. Then C is weakly integral (re-
spectively, integral, weakly group-theoretical, solvable or group-theoretical)
if and only if CA is weakly integral (respectively, integral, weakly group-
theoretical, solvable or group-theoretical).
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Proof. Observe that there is a dominant tensor functor F : C → CA. This im-
plies the ’only if’ direction. Suppose now that CA is in one of the prescribed
classes, that is, it is weakly integral, integral, weakly group-theoretical, solv-
able or group-theoretical. Then the center of CA is in the same class and,
because by (3.1), C is equivalent to a fusion subcategory of Z(CA), then C
is in that class as well. �

For a non-degenerate fusion category C, we shall denote by [C] its equiv-
alence class in the Witt group. Recall from [4, Corollary 5.9] that two
non-degenerate braided fusion categories C1 and C2 are Witt-equivalent if
and only if there exists a fusion category D such that Z(D) ∼= C1 � Crev

2 as
braided fusion categories.

In view of the equivalence (3.1), if A ∈ C is a connected étale algebra,
then [C] = [C0

A].

4. Braided fusion categories and braided G-crossed fusion
categories

Let G be a finite group. Recall that a braided G-crossed fusion category
[23, 24] is a fusion category A endowed with a G-grading A = ⊕g∈GAg

and an action of G by tensor autoequivalences ρ : G → Aut⊗A, such that
ρg(Ah) ⊆ Aghg−1 , for all g, h ∈ G, and a G-braiding c : X⊗Y → ρg(Y )⊗X,
g ∈ G, X ∈ Ag, Y ∈ A, subject to compatibility conditions.

A Tannakian subcategory E of a braided fusion category C gives rise to a
connected étale algebra A in C. If G is a finite group such that E ∼= RepG
as symmetric categories, then A is the algebra of functions on G with the
regular action of G.

The fusion category CA is in this case the de-equivariantization CG of C
with respect to RepG, and it is a braided G-crossed fusion category.

The braided fusion category C0
A is the neutral component of CG with

respect to the associated G-grading.

Conversely, let A be a G-crossed braided fusion category. Then the equiv-
ariantization AG under the action of G is a braided fusion category. The
canonical embedding RepG → AG of fusion categories is fact an embedding
of braided fusion categories. Hence AG contains E ∼= RepG as a Tannakian
subcategory.

The G-braiding on A restricts to a braiding in the neutral component Ae

of the G-grading. Furthermore, the group G acts by restriction on Ae and
this action is by braided tensor autoequivalences. This makes the equivari-
antization AG

e into a braided fusion subcategory of AG. This fusion subcate-
gory coincides with the centralizer Z2(E ,AG) of the Tannakian subcategory
E in AG. See [16].

In this way, equivariantization defines a bijective correspondence between
equivalence classes of braided fusion categories containing RepG as a Tan-
nakian subcategory and G-crossed braided fusion categories [15], [16], [9,
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Section 4.4]. The braided fusion category AG is non-degenerate if and only
if the neutral component Ae is non-degenerate and the G-grading of A is
faithful [9, Proposition 4.6 (ii)].

In particular, if C is a non-degenerate braided fusion category containing
a Tannakian subcategory E ∼= RepG, then |G|2 divides FPdim C.

Let A be a G-crossed braided fusion category such that the neutral com-
ponent Ae is non-degenerate and the G-grading of A is faithful. As a conse-
quence of (3.1), we have Arev

e = Z2(AG,Z(A)) and there is an equivalence
of braided fusion categories

(4.1) Z(A) ' AG �Arev
e .

In this context we have the following refinement of Proposition 3.1:

Proposition 4.1. Let C be a braided fusion category. Suppose that E ∼=
RepG ⊆ C is a Tannakian subcategory. Then C is weakly integral (respec-
tively, integral or weakly group-theoretical) if and only if C0

G is weakly integral
(respectively, integral, weakly group-theoretical). In addition, C is solvable if
and only if C0

G is solvable and G is solvable.

Proof. The statement concerning weakly integral, integral and weakly group-
theoretical fusion categories follows from Proposition 3.1, since the de-equi-
variantization CG is an H-extension of C0

G, for a (normal) subgroup H of
G. Suppose that C is solvable. Then the quotient category CG and hence
its fusion subcategory C0

G are solvable as well. Moreover, since C ∼= (CG)G
is a G-equivariantization, then the category RepG is equivalent to a fusion
subcategory of C and it is thus solvable. Hence the group G is solvable. If,
on the other hand, C0

G and G are solvable, then CG is solvable because it is an

H-extension of C0
G, for some subgroup H ⊆ G. Hence so is C ∼= (CG)G. �

Note that C is obtained from C0
G by an H-extension, where H ⊆ G is

a subgroup of G (the support of CG) followed by a G-equivariantization.
Since the class of group-theoretical fusion categories is not stable under the
operation of taking extensions, then the property of being group-theoretical
is not inherited in general from C0

G.

5. Solvable braided fusion categories

Recall that a fusion category C is called group-theoretical if C is Morita
equivalent to a pointed fusion category.

If C is a braided fusion category, it is shown in [18, Theorem 7.2] that C
is group-theoretical if and only if C contains a Tannakian subcategory E ∼=
RepG such that the de-equivariantization CG is a pointed fusion category.
This immediately implies the following:

Lemma 5.1. Let C be a group-theoretical braided fusion category. Then
either C is pointed or it contains a Tannakian subcategory.
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Proposition 5.2. Let C be a braided solvable fusion category. Assume in
addition that C is integral. Then either C is pointed or it contains a nontrivial
Tannakian subcategory.

Proof. Since C is solvable, there exist a group G of prime order and a
fusion category D such that C is equivalent as a fusion category to a G-
equivariantization or to a G-extension of D. In particular, D is integral and
solvable and FPdimD = FPdim C/|G| < FPdim C.

If C is a G-equivariantization of D, then there is a central exact sequence
of tensor functors RepG → C → D and RepG is a Tannakian subcategory
of C. See [2, Example 2.5 and Proposition 2.6].

Suppose next that C is a G-extension of D, then D is a braided fusion
category and we may assume inductively that D contains a Tannakian sub-
category, whence so does C, or D is pointed. The last possibility implies that
C is nilpotent. By [8, Theorem 6.10], an integral nilpotent braided fusion
category is group-theoretical. Then Lemma 5.1 implies that C has one of
the required properties. �

Theorem 5.3. Let C be a solvable non-degenerate braided fusion category.
Then one of the following holds:

(i) C contains a nontrivial Tannakian subcategory, or
(ii) C ∼= B � I1 � · · · � In, as braided fusion categories, where B is

a pointed non-degenerate fusion category and I1, . . . , In are Ising
braided categories.

Proof. The proof is by induction on FPdim C (note that, since C is solvable,
FPdim C is a natural integer). In view of Proposition 5.2, we may assume
that C is not integral. We may further assume that C is prime, that is,
C contains no proper non-degenerate fusion subcategories other than Vec;
otherwise, if D ⊆ C is a proper non-degenerate fusion subcategory, then
C ∼= D � Z2(D, C) [9, Theorem 3.13], and both D and Z2(D, C) are solvable
non-degenerate. By induction, D and Z2(D, C) satisfy (i) or (ii), and then
so does C.

The adjoint subcategory Cad is a solvable braided fusion category and it is
in addition integral, by [10, Proposition 8.27]. If Cad = Vec, then C is pointed
and we are done. We may assume that Cad � Vec and contains no nontrivial
Tannakian subcategories (otherwise C satisfies (i)). By Proposition 5.2, we
get that Cad is pointed, and therefore Z2(Cad) ∼= sVec. Indeed, Z2(Cad) is
pointed and symmetric, therefore it is super-Tannakian, thus Z2(Cad) ∼= sVec
in view of the assumption that Cad contains no Tannakian subcategories.

Hence Cad is slightly degenerate, and therefore Cad ∼= sVec�C0, where
C0 is a pointed non-degenerate braided fusion category [11, Proposition 2.6
(ii)]. But C is prime, by assumption, and hence Cad ∼= sVec. In particular,
Cad is a pointed subcategory.

Since C is non-degenerate, then Cad = Z2(Cpt, C) [9, Corollary 3.27]. Then
we get Cad = Z2(Cpt, C) ⊆ Cpt and thus Cad = Z2(Cpt) ∼= sVec. Appealing
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again to [11, Proposition 2.6 (ii)], we obtain that Cpt = Cad = sVec. Then,
by [9, Theorem 3.14], FPdim C = FPdim Cad FPdim Cpt = 4 and therefore C
is an Ising braided category. This finishes the proof of the theorem. �

6. The Witt class of a weakly group-theoretical
non-degenerate braided fusion category

Let W be the group of Witt classes of non-degenerate braided fusion
categories and letWpt andWIsing be the subgroups of Witt classes of pointed
non-degenerate fusion categories and Ising braided categories, respectively.

If C is a non-degenerate braided fusion category, C is called completely
anisotropic if the only connected étale algebra in C is A = 1. By [4, Theorem
5.13], every non-degenerate braided fusion category is Witt equivalent to a
unique completely anisotropic non-degenerate fusion category.

Lemma 6.1. Let C be a weakly group-theoretical braided fusion category.
Suppose that C is completely anisotropic. Then C is nilpotent.

Note that, since every braided nilpotent fusion category is solvable [11,
Proposition 4.5 (iii)], it follows that C is also solvable.

Proof. By [5, Corollary 3.8], equivalence classes of indecomposable mod-
ule categories over C are parameterized by isomorphism classes of triples
(A1, A2, φ), where A1, A2 are connected étale algebras in C and φ : C0

A1
→

(C0
A2

)rev is a braided equivalence. Furthermore, invertible module categories
correspond to such triples where A1 = A2 = 1 (see Remark 3.9 loc. cit.).

The assumption that C is weakly group-theoretical means that there exists
an indecomposable module category M such that C∗

M is nilpotent. Since C
is braided, M is naturally a C-bimodule category [6, Section 2.8]. Consider
the α-induction tensor functors [21, Section 5.1]

(6.1) α± : C → C∗
M,

defined by α±(X)(M) = X ⊗ M , X ∈ C, M ∈ M. Letting aX,Y,M :
X ⊗ (Y ⊗M) → (X ⊗ Y )⊗M , X,Y ∈ C, M ∈ M, denote the associativi-
ty isomorphisms for the C-action on M, the module functor structures on
α±(X), X ∈ C, are given, respectively, by

a−1
Y,X,M (cX,Y ⊗ id)aX,Y,M : α+(X)(Y ⊗M) → Y ⊗ α+(X)(M),

and

a−1
Y,X,M (crevX,Y ⊗ id)aX,Y,M : α−(X)(Y ⊗M) → Y ⊗ α−(X)(M),

Y ∈ C, M ∈ M.
The assumption that C is completely anisotropic implies that the module

category M is an invertible C-bimodule category. Therefore the functors
α± are equivalences of fusion categories [12, Proposition 4.2]. Hence C is
nilpotent, as claimed. �
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Theorem 6.2. Let C be a non-degenerate braided fusion category. Suppose
that C is weakly group-theoretical. Then [C] ∈ 〈Wpt,WIsing〉. If in addition
C is integral, then [C] ∈ Wpt.

Proof. The proof is by induction on FPdim C. We may assume that C is
prime. If A ∈ C is a connected étale algebra, then C is Witt equivalent
to the non-degenerate fusion category C0

A. Moreover, C0
A is also weakly

group-theoretical, since it is a fusion subcategory of a quotient category
of C, and FPdim C0

A = FPdim C/(FPdimA)2. Hence we may assume that
C is completely anisotropic, otherwise the statement follows by induction.
By Lemma 6.1, we get that C is solvable. In particular, being completely
anisotropic, C contains no nontrivial Tannakian subcategory and it follows
from Theorem 5.3 that C ∼= B � I1 � · · ·� In, as braided fusion categories,
where B is a pointed non-degenerate fusion category and I1, . . . , In are Ising
braided categories. Hence [C] ∈ 〈Wpt,WIsing〉. Moreover, if C is integral,
then so is C0

A, hence we may also assume inductively that C is completely
anisotropic. Then Theorem 5.3 implies that C is indeed pointed in this case.
This finishes the proof of the theorem. �

Let W̃ denote the subgroup generated by Witt equivalence classes of the
fusion categories C(g, k) of integrable highest weight modules of level l over
the affinization of a simple finite-dimensional Lie algebra g.

By [4, Remark 6.5], Wpt ⊆ W̃. On the other hand, for any Ising braided
category I, we have [I] = [C(sl(2), 2)]m, for a unique odd number m, 1 ≤
m ≤ 15 [4, Section 6.4 (3)]. Thus the subgroup generated byWpt and WIsing

is contained in W̃. As a consequence of Theorem 6.2, we get:

Corollary 6.3. Let C be a non-degenerate braided fusion category. Suppose

that C is weakly group-theoretical. Then [C] ∈ W̃.

Remark 6.4. Let sW denote the Witt group of slightly degenerate braided
fusion categories introduced in [5]. Recall from loc. cit. that there is a group
homomorphism S : W → sW, defined by S([C]) = [C�sVec], whose kernel is
the subgroup of W generated by the Witt classes of Ising braided categories.
It follows from Theorem 6.2 that for every weakly group-theoretical non-
degenerate braided fusion category C, we have S([C]) ∈ sWpt.

We also point out the following consequence of Theorem 6.2:

Corollary 6.5. Let C be an integral non-degenerate braided fusion category.
Suppose C is weakly group-theoretical (respectively, solvable). Then there
exist an integral nilpotent (respectively, cyclically nilpotent) fusion category
D and a pointed non-degenerate completely anisotropic fusion category B
such that Z(D) ∼= C � B as braided fusion categories.

Proof. By Theorem 6.2, there exist fusion category D and a pointed non-
degenerate fusion category B such that Z(D) ∼= C�B as braided fusion cat-
egories. Moreover, since every Witt class has a unique representative which
is completely anisotropic, we may assume that B is completely anisotropic.
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This implies that Z(D) is integral and weakly group-theoretical, and
therefore so is D. Hence there exists an indecomposable module category M
such that D∗

M is nilpotent. Furthermore, if C is solvable, then so is Z(D),
and therefore there exists M such that D∗

M is cyclically nilpotent. This im-
plies the corollary, since Z(D) ∼= Z(D∗

M) as braided tensor categories. �

7. Sufficient conditions for a non-degenerate braided fusion
category to be weakly group-theoretical

Let C be a fusion category. Let Irr(C) be the set of isomorphism classes
of simple objects of C and let G(C) be the group of isomorphism classes of
invertible objects.

The group G(C) acts on the set of isomorphism classes of simple objects
by tensor multiplication. For a simple object X ∈ C let G[X] denote the
stabilizer of X under this action. Thus G[X] is a subgroup of G(C) of
order dividing (FPdimX)2. Moreover, for every X ∈ Irr(C), we have an
isomorphism

(7.1) X ⊗X∗ ∼=
⊕

g∈G[X]

g ⊕
⊕

Y ∈Irr(C)
FPdimY >1

HomC(Y,X ⊗X∗)⊗ Y.

Lemma 7.1. Let C be a braided fusion category. Suppose that C contains
no nontrivial non-degenerate or Tannakian fusion subcategories. Then C is
slightly degenerate and the following hold:

(i) Cpt = Z2(C) ∼= sVec;
(ii) G[X] = 1, for all simple object X ∈ C.

Proof. Consider the Müger center Z2(C) of C. Then Z2(C) is a symmetric
fusion subcategory and therefore it is super-Tannakian. The assumptions
on C imply that Z2(C) � Vec and also that Z2(C) contains no nontrivial
Tannakian subcategories. Hence Z2(C) ∼= sVec [11, Section 2.4] and there-
fore C is slightly degenerate. Note that Z2(C) ⊆ Cpt. Moreover, since Cpt
cannot contain any nontrivial non-degenerate or Tannakian fusion subcat-
egory, then it is slightly degenerate as well. By [11, Proposition 2.6 (ii)],
every slightly degenerate pointed braided fusion category factorizes in the
form sVec�B, where B is a pointed non-degenerate braided fusion category.
This implies that in our case Cpt = Z2(C) ∼= sVec, whence we get part (i).
Let 1 6= g ∈ sVec be the unique nontrivial (fermionic) invertible object. If
X ∈ C is a simple object, we have g⊗X � X [11, Proposition 2.6 (i)]. This
implies part (ii), since by (i), g is the only nontrivial invertible object of
C. �

It is well-known that if all the character degrees of a finite group G are
powers of a prime number p, then G is solvable; see [14]. The following
theorem extends this result to braided fusion categories. Some instances of
the theorem were obtained previously in [19, Theorem 7.3] and [20, Theorem
1.1].
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Theorem 7.2. Let C be a braided fusion category such that FPdim C ∈ Z.
Suppose that p is a prime number such that FPdimX is a power of p, for
all simple object X ∈ C. Then C is solvable.

Note that since the Frobenius-Perron dimension of C is an integer, we have
(FPdimX)2 ∈ Z, for all X ∈ Irr(C) [10, Proposition 8.27]. Therefore the
possible powers of p that can occur as simple Frobenius-Perron dimensions
in C are half-integer powers.

Proof. The proof is by induction on FPdim C. We may assume that C is
integral. Otherwise, C is a U(C)-extension of its integral fusion subcategory
Cad, where U(C) denotes the universal grading group of C. By induction, Cad
is solvable. Since C is braided, its universal grading group is abelian, and
therefore C is also solvable.

It will be enough to show that C contains a nontrivial Tannakian subcat-
egory E . In such case, E ∼= RepG for some finite group G and G is solvable,
because dimY = pm, m ≥ 0, for all simple objects Y ∈ RepG. Moreover,
it follows from [3, Corollary 2.13], that the Frobenius-Perron dimensions of
simple objects in the de-equivariantization CG, and thus also in its fusion
subcategory C0

G, are powers of p as well. Since FPdim C0
G ≤ FPdim CG =

FPdim C/|G| < FPdim C and C0
G is braided, then C0

G is solvable, by induc-
tion. Hence so is C, by Proposition 4.1.

In view of the relations (7.1), the assumption implies that for every simple
object X of C the order of the group G[X] is divisible by p. If C contains
no nontrivial non-degenerate or Tannakian subcategories, then Lemma 7.1
applies, and we obtain that G[X] = 1, for all simple object X ∈ C, which is
a contradiction.

We may thus assume that C contains a nontrivial non-degenerate fusion
subcategory. Suppose first that C is itself non-degenerate. Since p divides
FPdim Cpt, then Cpt 6= Vec. Hence Cad = (Cpt)′ ( C and, by induction, Cad
is solvable. Then so is C, because it is a U(C)-extension of Cad and U(C) is
abelian. If, on the other hand, D ( C is a nontrivial non-degenerate fusion
subcategory, then C ∼= D�D′ and FPdimD,FPdimD′ < FPdim C. Hence D
and D′ are both solvable by induction and therefore so is C. This completes
the proof of the theorem. �
Corollary 7.3. Let C be a non-degenerate braided fusion category and let
p be a prime number. Suppose that FPdim C = pac, where a ≥ 0 and c is a
square free natural integer. Then C is solvable.

Proof. Let X ∈ C be a simple object. Since C is non-degenerate, then
(FPdimX)2 divides FPdim C [11, Theorem 2.11 (i)]. If C is integral, then
FPdimX must be a power of p for all X ∈ Irr(C) and therefore C is solvable,
by Theorem 7.2. Suppose next that C is not integral. Then C is a G-
extension of an integral fusion subcategory D, where G is an elementary
abelian 2-group [13, Theorem 3.10]. Again in this case, we get that the
Frobenius-Perron dimension of a simple object of D is a power of p and
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therefore the braided fusion category D is solvable, by Theorem 7.2. Then
C, being a G-extension of D, is also solvable. �

Theorem 7.4. Let p and q be prime numbers. Let C be a non-degenerate
braided fusion category such that FPdim C = paqbc, where a, b ≥ 0, and c is
a square-free integer. Then C is weakly group-theoretical.

Proof. Observe that, after eventually replacing c by an appropriate divisor,
we may assume that c is relatively prime to p and q. The proof of the
theorem is by induction on FPdim C. As in the proof of Theorem 7.2, we
may assume that C is integral and it will be enough to show that C contains
a nontrivial Tannakian subcategory.

Let us assume that C is not pointed, otherwise there is nothing to prove.
Since C is non-degenerate, then for every simple object X ∈ C, we have that
(FPdimX)2 divides FPdim C. Hence a ≥ 2 or b ≥ 2 and moreover, for every
simple object X, we have FPdimX = pnqm, for some n,m ≥ 0.

Suppose first that C has no non-invertible simple object of prime power
dimension. Then pq|FPdimX, for all non-invertible X ∈ Irr(C). In view
of the relations (7.1), this implies that for any fusion subcategory D, the
Frobenius-Perron dimension of Dpt = D ∩ Cpt is divisible by pq. In particu-
lar, FPdim Cpt∩Cad is divisible by pq and thus it is bigger than 2. But, since
C is non-degenerate, then Cpt = C′

ad and therefore the category Cpt ∩ Cad is
symmetric. It follows that Cpt∩Cad contains a nontrivial Tannakian subcat-
egory and we are done.

Suppose next that C has a simple object of prime power dimension. By
[11, Corollary 7.2], C contains a nontrivial symmetric subcategory D. We
may assume that D contains no nontrivial Tannakian subcategory, and thus
D ∼= sVec. Since D′′ = D, then D′ is a slightly degenerate fusion category.

If D′ has a simple object of odd prime power dimension, then it contains a
nontrivial Tannakian subcategory by [11, Proposition 7.4], and we are done.
If FPdimX is divisible by pq for all simple object X ∈ D′, then pq divides
the order of the group G[X] for all X ∈ Irr(D′), by (7.1). In view of Lemma
7.1, we may assume that D′ contains a nontrivial non-degenerate fusion
subcategory B. Then C ∼= B� B′, where B and B′ are both non-degenerate.
Then FPdimB FPdimB′ = FPdim C = paqbc and FPdimB,FPdimB′ <
FPdim C, it follows by induction that B and B′ are both weakly group-
theoretical and then so is C.

It remains to consider the case where FPdimX = 2m, m ≥ 0, for every
simple object X of D′. In this case, Theorem 7.2 implies that D′ is solvable.
Then it follows from Proposition 5.2, that either D′ contains a nontriv-
ial Tannakian subcategory, in which case we are done, or D′ is pointed.
Suppose that D′ is pointed. By [11, Proposition 2.6 (ii)], D′ ∼= sVec�B,
where B is a pointed non-degenerate fusion category. If B is not trivial
then, as before, C ∼= B � B′, where B and B′ are both non-degenerate and
FPdimB,FPdimB′ < FPdim C, hence C is weakly group-theoretical, by in-
duction. If, on the other hand, B ∼= Vec, then FPdimD′ = 2 and therefore
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FPdim C = FPdimDFPdimD′ = 4. Hence C is nilpotent and in particu-
lar it is weakly group-theoretical as well. This completes the proof of the
theorem. �

8. Non-degenerate braided fusion categories of low dimension

As an application of Theorem 7.4 we prove in this section that non-
degenerate fusion categories of small dimension are weakly group-theoretical.

Theorem 8.1. Let C be a weakly integral non-degenerate fusion category
such that FPdim C < 1800. Then C is weakly group-theoretical.

Proof. Every natural number n < 1800 such that n 6= 900, factorizes in the
form n = paqbc, where p and q are prime numbers, a, b ≥ 0, and c is a
square-free integer. In view of Theorem 7.4 it will be enough to consider the
case where FPdim C = 900.

We may assume that C is a prime non-degenerate fusion category, that is,
C contains no nontrivial proper non-degenerate fusion subcategory, and in
addition C contains no nontrivial Tannakian subcategory. Indeed, if D ⊆ C
is a nontrivial proper non-degenerate fusion subcategory, then C ∼= D � D′

where D and D′ are non-degenerate fusion subcategories of Frobenius-Perron
dimension strictly less than 900, and thus weakly group-theoretical. Then C
is weakly group-theoretical in this case. Similary, if C contains a nontrivial
Tannakian subcategory E ∼= RepG, where G is a finite group, |G| > 1,
then the de-equivariantization CG is a G-crossed braided fusion category of
Frobenius-Perron dimension strictly less than 900, whose neutral component
C0
G is non-degenerate and thus weakly group-theoretical. Hence CG and C

are both weakly group-theoretical as well.
It follows from the proof of [11, Theorem 9.2] that a non-degenerate inte-

gral fusion category of Frobenius-Perron dimension p2q2r2, where p < q < r
are prime numbers, contains a nontrivial Tannakian subcategory. Hence we
may assume that C is not integral.

Therefore C is an E-extension of an integral fusion subcategory D, where
E is an elementary abelian 2-group [13, Theorem 3.10]. Then |E| = 2
or 4 and FPdimD = FPdim C/|E|. Hence we may assume FPdimD =
FPdim C/2, because otherwise D and therefore also C would be solvable,
in view of [11, Theorem 1.6]. We may further assume that D contains no
nontrivial non-degenerate or Tannakian fusion subcategories. It follows from
Lemma 7.1 that D is slightly degenerate, Dpt

∼= sVec and G[X] = 1, for all
simple object X ∈ D.

In addition, if X ∈ D is a simple object, then (FPdimX)2 divides 900 =
FPdim C. Thus FPdimX = 1, 2, 3, 5, 6, 10 or 15. Since the group of invert-
ible objects of D is of order 2 and G[X] = 1, then the number of simple
objects of D of a given Frobenius-Perron dimension must be even. In par-
ticular, since FPdimD = 2(15)2, then D cannot have simple objects of
Frobenius-Perron dimension 15. Also, by [11, Proposition 7.4], D has no
simple objects of Frobenius-Perron dimension 3 or 5. Thus we conclude
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that the Frobenius-Perron dimension of every non-invertible simple object
X of D is necessarily even. Decomposing X ⊗X∗ into a sum of simple ob-
jects and using that G[X] = 1 we arrive to a contradiction; see (7.1). This
shows that C is weakly group-theoretical, as claimed. �

The result in Theorem 8.1 can be strengthened in the odd-dimensional
case. In fact, we have:

Theorem 8.2. Let C be a weakly integral non-degenerate fusion category
such that FPdim C is odd and FPdim C < 33075. Then C is solvable.

Proof. It will be enough to show that C is weakly group-theoretical, since
any odd-dimensional weakly group-theoretical fusion category is necessarily
solvable [19, Proposition 7.1]. The assumption that FPdim C is odd implies
furthermore that C is integral [13, Corollary 3.11].

Observe that an odd natural number n < 33075 = 335272 such that
n 6= 11025, factorizes in the form n = paqbc, where p and q are prime
numbers, a, b ≥ 0, and c is a square-free integer. By Theorem 7.4, we only
need to consider the case where FPdim C = 11025 = 325272. In this case,
it follows from the proof of [11, Lemma 9.3] that C contains a nontrivial
symmetric (thus Tannakian) subcategory E ∼= RepG. Then C0

G is weakly
group-theoretical and hence so is C. �
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